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Plan

Concrete → abstract
Vendor-specific → portable
Prepared exercises

1 CUDA
2 OpenACC
3 Kokkos

Usually, C and Fortran
Running example: Jacobi, but sometimes side-quests
Timetable online, but only guideline
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Platform



GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40GB), but high-speedmemory 1555GB/s
Stage data to GPUmemory: via PCIe 4 (32GB/s) or PCIe 5 (64GB/s) bus

Stage automatically (Unified Memory), or manually
GH200: NVLink C2C 900GB/s

Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

Single Instruction, Multiple Threads (SIMT)A100
40GB RAM, 1555GB/s

H100
80GB RAM, 3352GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM3
3352GB/s

PCIe 5
≈64GB/s
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SIMT
SIMT = SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)

Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

CPU coreu GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if
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A100 vs H100
Comparison of last vs. current generation

A100 H100
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CPU vs. GPU
Let’s summarize this!

Optimized for low latency
+ Large main memory
+ Fast clock rate
+ Large caches
+ Branch prediction
+ Powerful ALU
– Relatively lowmemory bandwidth
– Cachemisses costly
– Low performance per watt

Optimized for high throughput
+ High bandwidth main memory
+ Latency tolerant (parallelism)
+ More compute resources
+ High performance per watt
– Limited memory capacity
– Low per-thread performance
– Extension card
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Programming GPUs



Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration
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Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

w
iz
ar
d

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math
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cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));

cublasSaxpy(handle, n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);
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Summary of Acceleration Possibilities
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! Parallelism

Libraries are not enough?

You think you want to write your own GPU code?
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Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for
N parallel processors
Total Time t = tserial + tparallel

N Processors t(N) = ts + tp/N

Speedup s(N) = t/t(N) =
ts+tp
ts+tp/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0
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p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%
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! Parallelism

Parallel programming is not easy!

Things to consider:
Is my application computationally intensive enough?
What are the levels of parallelism?
Howmuch data needs to be transferred?
Is the gainworth the pain?
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Alternatives
The twilight

There are GPU programmingmodels, which can ease the pain…
OpenACC, OpenMP
Thrust
Kokkos, RAJA, ALPAKA, SYCL, DPC++, pSTL
PyCUDA, Cupy, Numba
CUDA Fortran
HIP, CUDA
OpenCL
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Programming GPUs
Directives



GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

OpenACC: Especially for GPUs;OpenMP: Has GPU support
Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
A little harder to debug
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GPU Programming with Directives
The power of… two.

OpenMP Standard for multithread programming on CPU, GPU since 4.0, better since 4.5
#pragma omp target map(tofrom:y), map(to:x)
#pragma omp teams num_teams(10) num_threads(10)
#pragma omp distribute
for ( ) {

#pragma omp parallel for
for ( ) {
// …
}

}

OpenACC Similar to OpenMP, but more specifically for GPUs
For C/C++ and Fortran
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OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc kernels
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);
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OpenACC
Code example
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OpenACC / OpenMP
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc kernels
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}
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OpenACC / OpenMP
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma omp target map(to:x[0:n]) map(tofrom:y[0:n]) loop
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

float a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
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Programming GPUs
Kokkos



Performance Portability
Performant Single Source Implementation

Host Kernels

Kokkos

JUPITER
NVIDIA (ARMv9)
NVIDIA (CUDA)

Host Data

Device Data
Structures

JUWELS

AMD (x64)
NVIDIA (CUDA)

LUMI

AMD (x64)
AMD (HIP)

HUNTER

AMD (x64)
AMD (HIP)

SUPERMUC

Intel (x64, HBM)
Intel (PVC)

Device Data
Structures

Thread
Configuration Kernel Scheduling
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History and Support

Established 2012

Widely used in HPC, especially US
Exascale Computing Project ECP

Support for most major HPC platforms

Nowmoving into Linux Foundation
Feedback loop with C++ Standards

Parallel STL
std::atomic_ref
std::mdspan and std::mdarray

Online Presence

https://github.com/kokkos
Primary Github Organization

https://kokkosteam.slack.com
Slack Channel for Kokkos
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First Look
Hello, World!

struct functor {
__host__ __device__ void operator()(const int i) const {
Kokkos::printf("Hello from i = %i\n", i);

}};

int main(int argc, char* argv[]) {
Kokkos::initialize(argc, argv);
Kokkos::parallel_for("HelloWorld", 8, functor());
Kokkos::finalize();

}

Output
Hello from i = 0
Hello from i = 1
Hello from i = 2
Hello from i = 3
Hello from i = 4
Hello from i = 5
Hello from i = 6
Hello from i = 7
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Programming GPUs
CUDA C/C++



Preface: CPU
A simple CPU program!

SAXPY: ~y = a~x + ~y, with single precision
Part of LAPACK BLAS Level 1
void saxpy(int n, float a, float * x, float * y) {

for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy(n, a, x, y);
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CUDA SAXPY
With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Member of the Helmholtz Association 6 November 2024 Slide 29 49



CUDA SAXPY
With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Specify kernel

ID variables

Guard against
too many threads

Allocate GPU-capable
memory

Call kernel
2 blocks, each 5 threads

Wait for
kernel to finish
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CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!
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Kernel Functions

Kernel: Parallel GPU function
Executed by each thread
In parallel
Called from host or device

All threads execute same code; but can take different paths in program flow (some penalty)
Info about thread: local, global IDs
int currentThreadId = threadIdx.x;
float x = input[currentThreadId];
output[currentThreadId] = x*x;
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Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops

void scale(float scale, float * in, float * out, int N) {
for (int i = 0; i < N; i++)

out[i] = scale * in[i];
}
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Identify Loops
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for (

int i = 0;
i < N;
i++

)
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Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index

void scale(float scale, float * in, float * out, int N) {
int i = 0;
for ( ;

i < N;
i++

)
out[i] = scale * in[i];

}
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Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition

void scale(float scale, float * in, float * out, int N) {
int i = 0;
for ( ;

;
i++

)
if (i < N)

out[i] = scale * in[i];
}
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Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for

void scale(float scale, float * in, float * out, int N) {
int i = 0;

if (i < N)
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}

Member of the Helmholtz Association 6 November 2024 Slide 33 49



Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

__global__ void scale(float scale, float * in, float * out, int N) {
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if (i < N)
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}
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Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x;
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out[i] = scale * in[i];

}
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Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x … including block configuration
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x + blockIdx.x * blockDim.x;

if (i < N)
out[i] = scale * in[i];

}
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Kernel Conversion
Summary

C function with explicit loop
void scale(float scale, float * in, float * out, int N) {

for (int i = 0; i < N; i++)
out[i] = scale * in[i];

}

CUDA kernel with implicit loop
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x + blockIdx.x * blockDim.x;
if (i < N)

out[i] = scale * in[i];
}
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Kernel Launch

kernel<<<int gridDim, int blockDim>>>(...)

Parallel threads of kernel launched with triple-chevron syntax
Total number of threads, divided into

Number of blocks on the grid (gridDim)
Number of threads per block (blockDim)

Call returns immediately; kernel launch is asynchronous!
Example:
int nThreads = 32;
scale<<<N/nThreads, nThreads>>>(23, in, out, N)

Possibility for too many threads; include termination condition into kernel!
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Full Kernel Launch
For Reference

kernel<<<dim3 gD, dim3 bD, size_t shared, cudaStream_t stream>>>(...)

2 additional, optional parameters

shared Dynamic sharedmemory
Small GPUmemory space; share data in block (high bandwidth)
Sharedmemory: allocate statically (compile time) or dynamically (run time)
size_t shared: bytes of shared memory allocated per block (in addition to static
sharedmemory)

stream Associated CUDA stream
CUDA streams enable different channels of communication with GPU
Can overlap in some cases (communication, computation)
cudaStream_t stream: ID of stream to use for this kernel launch
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Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops

void scale(float scale, float * in, float * out, int N) {
for (int i = 0; i < N; i++)

out[i] = scale * in[i];
}
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Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index
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Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition

void scale(float scale, float * in, float * out, int N) {
int i = 0;
for ( ;

;
i++

)
if (i < N)

out[i] = scale * in[i];
}
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Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for

void scale(float scale, float * in, float * out, int N) {
int i = 0;

if (i < N)
out[i] = scale * in[i];

}
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Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

__global__ void scale(float scale, float * in, float * out, int N) {
int i = 0;

if (i < N)
out[i] = scale * in[i];

}
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Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x;

if (i < N)
out[i] = scale * in[i];

}
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Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x … including block configuration
__global__ void scale(float scale, float * in, float * out, int N) {
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if (i < N)
out[i] = scale * in[i];
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Kernel Conversion
Summary

C function with explicit loop
void scale(float scale, float * in, float * out, int N) {

for (int i = 0; i < N; i++)
out[i] = scale * in[i];

}

CUDA kernel with implicit loop
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x + blockIdx.x * blockDim.x;
if (i < N)

out[i] = scale * in[i];
}
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Grid Dimensions 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Threads & blocks in 3D3D3D3D

Create 3D configurations with struct dim3

dim3 blockOrGridDim(size_t dimX, size_t dimY, size_t dimZ)

Any unspecified component initialized to 1
Example:
dim3 blockDim(32, 32);
dim3 gridDim = {1000, 100};
Kernel call with dim3

kernel<<<dim3 gridDim, dim3 blockDim>>>(...)
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Create 3D configurations with struct dim3
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Grid Sizes
Block and grid sizes are hardware-dependent

For JSC GPUs: Tesla V100, A100, H100
Block ~NThread ≤ (1024x, 1024y, 64z)

|~NThread| = NThread ≤ 1024

Grid ~NBlocks ≤ (2147483647x, 65535y, 65535z) = (231, 216, 216) –~1

Find out yourself: deviceQuery example from CUDA Samples
Workflow: Chose 128 or 256 as block dim; calculate grid dim from problem size
int Nx = 1000, Ny = 1000;
dim3 blockDim(16, 16);
int gx = (Nx % blockDim.x == 0) Nx / blockDim.x : Nx / blockDim.x + 1;
int gy = (Ny % blockDim.y == 0) Ny / blockDim.y : Ny / blockDim.y + 1;
dim3 gridDim(gx, gy);
kernel<<<gridDim, blockDim>>>();
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Hardware Threads
Mapping Software Threads to Hardware

Thread

CUDA Core

Thread Block

Multiprocessor (SM)

Grid

GPU Device
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GPUMemory

Data needs to reach the GPU; many ways to do so
Progression

cudaMalloc() First: Manual transfers via dedicated API
cudaMallocManaged() Then: Automated transfers via dedicated API

malloc() Now: Automated transfers via usual API
malloc() has some caveats (system support) → Full CUDA Unified Memory Support

→ CUDA documentation Unified Memory Programming
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Memory Management
With Automated Transfers

Allocate memory to be used on GPU or CPU

cudaMallocManaged(T** ptr, size_t nBytes)

Data is copied to GPU or to CPU automatically (managed)

Example:
float * a;
int N = 2048;
cudaMallocManaged(&a, N * sizeof(float));

Free device memory

cudaFree(void* ptr)
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Memory Management
With Manual Transfers

Allocate memory to be used on GPU

cudaMalloc(T** ptr, size_t nBytes)

Copy data between host↔ device

cudaMemcpy(void* dst, void* src, size_t nByte, enum cudaMemcpyKind dir)

Example:
float * a, * a_d;
int N = 2048;
// fill a
cudaMalloc(&a_d, N * sizeof(float));
cudaMemcpy(a_d, a, N * sizeof(float), cudaMemcpyHostToDevice);
kernel<<<1,1>>>(a_d, N);
cudaMemcpy(a , a_d, N * sizeof(float), cudaMemcpyDeviceToHost);
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Manual Memory vs. Unified Memory

void sortfile(FILE *fp, int N) {
char *data;
char *data_d;

data = (char *)malloc(N);
cudaMalloc(&data_d, N);

fread(data, 1, N, fp);

cudaMemcpy(data_d, data, N, cudaMemcpyHostToDevice);
kernel<<<...>>>(data, N);

cudaMemcpy(data, data_d, N, cudaMemcpyDeviceToHost);
host_func(data)
cudaFree(data_d); free(data);

}

void sortfile(FILE *fp, int N) {
char *data;

cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data);

}
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Exercises



Exercises TASK

Open fresh shell for today (reservation)
Call jsc-material-sync (pull in recent changes)

See $HOME/natESM/GPU-Course/CUDA
Read instructions!
Solutions given; you tinker as long as you want, then ask or check solutions
Timeline

CUDA until coffee break; solutions after break
OpenACC until lunch, solutions before/after?
Kokkos in afternoon
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Jacobi Solver
Algorithmic description

Example for acceleration: Jacobi solver
Iterative solver, converges to correct value
Each iteration step: compute average of neighboring points
Example: 2D Poisson equation: ∇2A(x, y) = B(x, y)

Ai,j+1

Ai–1,j

Ai,j–1

Ai+1,j

Data Point
Boundary Point
Stencil

Ak+1(i, j) = –
1
4
(B(i, j) – (Ak (i – 1, j) + Ak (i, j + 1), +Ak (i + 1, j) + Ak (i, j – 1)))
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GPU Programming

Many ways of doing it!
CUDA: Native programmingmodel
OpenACC: High-level abstraction, with some portability; simple
Kokkos: Dedicated programmingmodel, performance-portability, C++
Pick your poison!
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Appendix
Glossary
References
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Glossary I

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA C/C++.
2, 48, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 92, 93, 94, 108, 109, 110, 111, 112,
128

NVIDIA US technology company creating GPUs. 18, 19, 20, 128, 129, 130
NVLink NVIDIA’s communication protocol connecting CPU↔ GPU and GPU↔ GPUwith

high bandwidth. 130

OpenACC Directive-based programming, primarily for many-core machines. 48, 50, 51, 52,
53, 54, 55, 56, 57

OpenCL The Open Computing Language. Framework for writing code for heterogeneous
architectures (CPU, GPU, DSP, FPGA). The alternative to CUDA. 48
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Glossary II

OpenMP Directive-based programming, primarily for multi-threadedmachines. 48, 50, 51,
52, 53, 56, 57

SAXPY Single-precisionA× X + Y. A simple code example of scaling a vector and adding
an offset. 63, 64, 65

Tesla The GPU product line for general purpose computing computing of NVIDIA. 108,
109, 110, 111, 112

Thrust A parallel algorithms library for (among others) GPUs. See
https://thrust.github.io/. 48
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Glossary III

V100 A large GPU with the Volta architecture from NVIDIA. It employs NVLink 2 as its
interconnect and has fast HBM2memory. Additionally, it features Tensorcores for
Deep Learning and Independent Thread Scheduling. 108, 109, 110, 111, 112

Volta GPU architecture from NVIDIA (announced 2017). 130

CPU Central Processing Unit. 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 53, 63, 115, 116, 117,
128

GPU Graphics Processing Unit. 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25,
28, 29, 30, 31, 32, 42, 49, 50, 51, 52, 53, 58, 62, 65, 75, 76, 77, 92, 93, 94, 108, 109,
110, 111, 112, 115, 116, 117, 118, 119, 120, 128, 129, 130

SIMD Single Instruction, Multiple Data. 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
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Glossary IV

SIMT Single Instruction, Multiple Threads. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20

SM Streaming Multiprocessor. 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

SMT Simultaneous Multithreading. 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
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