
Taming The GPU Beasts & CUDA
natESM Training Workshop
6 November 2024 Andreas Herten Forschungszentrum Jülich

Member of the Helmholtz Association

Outline
Platform
Programming GPUs

Libraries
GPU programmingmodels
Directives
Kokkos
CUDA C/C++

Parallel Model
Kernels
Grid, Blocks
Memory Management

Exercises
Conclusions

Member of the Helmholtz Association 6 November 2024 Slide 1 49

Plan

Concrete → abstract
Vendor-specific → portable
Prepared exercises

1 CUDA
2 OpenACC
3 Kokkos

Usually, C and Fortran
Running example: Jacobi, but sometimes side-quests
Timetable online, but only guideline

Member of the Helmholtz Association 6 November 2024 Slide 2 49

Platform

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40GB), but high-speedmemory 1555GB/s
Stage data to GPUmemory: via PCIe 4 (32GB/s) or PCIe 5 (64GB/s) bus

Stage automatically (Unified Memory), or manually
GH200: NVLink C2C 900GB/s

Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

Single Instruction, Multiple Threads (SIMT)A100
40GB RAM, 1555GB/s

H100
80GB RAM, 3352GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM3
3352GB/s

PCIe 5
≈64GB/s

Member of the Helmholtz Association 6 November 2024 Slide 4 49

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40GB), but high-speedmemory 1555GB/s
Stage data to GPUmemory: via PCIe 4 (32GB/s) or PCIe 5 (64GB/s) bus

Stage automatically (Unified Memory), or manually
GH200: NVLink C2C 900GB/s

Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

SIMT A100
40GB RAM, 1555GB/s

H100
80GB RAM, 3352GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM3
3352GB/s

PCIe 5
≈64GB/s

Member of the Helmholtz Association 6 November 2024 Slide 4 49

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40GB), but high-speedmemory 1555GB/s
Stage data to GPUmemory: via PCIe 4 (32GB/s) or PCIe 5 (64GB/s) bus
Stage automatically (Unified Memory), or manually

GH200: NVLink C2C 900GB/s
Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

SIMT A100
40GB RAM, 1555GB/s

H100
80GB RAM, 3352GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM3
3352GB/s

PCIe 5
≈64GB/s

Member of the Helmholtz Association 6 November 2024 Slide 4 49

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40GB), but high-speedmemory 1555GB/s
Stage data to GPUmemory: via PCIe 4 (32GB/s) or PCIe 5 (64GB/s) bus
Stage automatically (Unified Memory), or manually
GH200: NVLink C2C 900GB/s

Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

SIMT A100
40GB RAM, 1555GB/s

H100
80GB RAM, 3352GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM3
3352GB/s

PCIe 5
≈64GB/s

Member of the Helmholtz Association 6 November 2024 Slide 4 49

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40GB), but high-speedmemory 1555GB/s
Stage data to GPUmemory: via PCIe 4 (32GB/s) or PCIe 5 (64GB/s) bus
Stage automatically (Unified Memory), or manually
GH200: NVLink C2C 900GB/s

Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

SIMT

A100
40GB RAM, 1555GB/s

H100
80GB RAM, 3352GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM3
3352GB/s

PCIe 5
≈64GB/s

Member of the Helmholtz Association 6 November 2024 Slide 4 49

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40GB), but high-speedmemory 1555GB/s
Stage data to GPUmemory: via PCIe 4 (32GB/s) or PCIe 5 (64GB/s) bus
Stage automatically (Unified Memory), or manually
GH200: NVLink C2C 900GB/s

Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

SIMT A100
40GB RAM, 1555GB/s

H100
80GB RAM, 3352GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM3
3352GB/s

PCIe 5
≈64GB/s

Member of the Helmholtz Association 6 November 2024 Slide 4 49

SIMT
SIMT = SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)

Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

CPU coreu GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

+

+

+

C0

C1

C2

C3

=

=

=

=

Scalar

Member of the Helmholtz Association 6 November 2024 Slide 5 49

SIMT
SIMT = SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)

Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

CPU coreu GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Member of the Helmholtz Association 6 November 2024 Slide 5 49

SIMT
SIMT = SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU coreu GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Member of the Helmholtz Association 6 November 2024 Slide 5 49

SIMT
SIMT = SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU coreu GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

Member of the Helmholtz Association 6 November 2024 Slide 5 49

SIMT
SIMT = SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU coreu GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

Member of the Helmholtz Association 6 November 2024 Slide 5 49

SIMT
SIMT = SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU coreu GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 6 November 2024 Slide 5 49

SIMT
SIMT = SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU coreu GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 6 November 2024 Slide 5 49

SIMT
SIMT = SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU coreu GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

NVIDIA GA100

Gr
ap

hi
cs
:i
m
g:
am

pe
re
pi
ct
ur
es

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 6 November 2024 Slide 5 49

SIMT
SIMT = SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU coreu GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

NVIDIA GA100

Gr
ap

hi
cs
:i
m
g:
am

pe
re
pi
ct
ur
es

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 6 November 2024 Slide 5 49

SIMT
SIMT = SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU coreu GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

NVIDIA GA100

Multiprocessor

Gr
ap

hi
cs
:i
m
g:
am

pe
re
pi
ct
ur
es

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 6 November 2024 Slide 5 49

A100 vs H100
Comparison of last vs. current generation

A100 H100

Member of the Helmholtz Association 6 November 2024 Slide 6 49

A100 vs H100
Comparison of last vs. current generation

A100 H100

Member of the Helmholtz Association 6 November 2024 Slide 6 49

A100 vs H100
Comparison of last vs. current generation

A100 H100

Member of the Helmholtz Association 6 November 2024 Slide 6 49

CPU vs. GPU
Let’s summarize this!

Optimized for low latency
+ Large main memory
+ Fast clock rate
+ Large caches
+ Branch prediction
+ Powerful ALU
– Relatively lowmemory bandwidth
– Cachemisses costly
– Low performance per watt

Optimized for high throughput
+ High bandwidth main memory
+ Latency tolerant (parallelism)
+ More compute resources
+ High performance per watt
– Limited memory capacity
– Low per-thread performance
– Extension card

Member of the Helmholtz Association 6 November 2024 Slide 7 49

Programming GPUs

Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 6 November 2024 Slide 9 49

Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 6 November 2024 Slide 9 49

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

w
iz
ar
d

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 6 November 2024 Slide 10 49

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

w
iz
ar
d

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 6 November 2024 Slide 10 49

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

w
iz
ar
d

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 6 November 2024 Slide 10 49

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

w
iz
ar
d

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 6 November 2024 Slide 10 49

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

w
iz
ar
d

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 6 November 2024 Slide 10 49

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));

cublasSaxpy(handle, n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Member of the Helmholtz Association 6 November 2024 Slide 11 49

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));

cublasSaxpy(handle, n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Member of the Helmholtz Association 6 November 2024 Slide 12 49

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));

cublasSaxpy(handle, n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Member of the Helmholtz Association 6 November 2024 Slide 12 49

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));

cublasSaxpy(handle, n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Member of the Helmholtz Association 6 November 2024 Slide 12 49

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));

cublasSaxpy(handle, n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Call BLAS routine

Member of the Helmholtz Association 6 November 2024 Slide 12 49

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));

cublasSaxpy(handle, n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Call BLAS routine

Copy result to host

Member of the Helmholtz Association 6 November 2024 Slide 12 49

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));

cublasSaxpy(handle, n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Call BLAS routine

Copy result to host

Finalize

Member of the Helmholtz Association 6 November 2024 Slide 12 49

Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 6 November 2024 Slide 13 49

Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 6 November 2024 Slide 13 49

! Parallelism

Libraries are not enough?

You think you want to write your own GPU code?

Member of the Helmholtz Association 6 November 2024 Slide 14 49

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for
N parallel processors
Total Time t = tserial + tparallel

N Processors t(N) = ts + tp/N

Speedup s(N) = t/t(N) =
ts+tp
ts+tp/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%

Member of the Helmholtz Association 6 November 2024 Slide 15 49

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for
N parallel processors
Total Time t = tserial + tparallel
N Processors t(N) = ts + tp/N

Speedup s(N) = t/t(N) =
ts+tp
ts+tp/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%

Member of the Helmholtz Association 6 November 2024 Slide 15 49

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for
N parallel processors
Total Time t = tserial + tparallel
N Processors t(N) = ts + tp/N

Speedup s(N) = t/t(N) =
ts+tp
ts+tp/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%

Member of the Helmholtz Association 6 November 2024 Slide 15 49

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for
N parallel processors
Total Time t = tserial + tparallel
N Processors t(N) = ts + tp/N

Speedup s(N) = t/t(N) =
ts+tp
ts+tp/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%

Member of the Helmholtz Association 6 November 2024 Slide 15 49

! Parallelism

Parallel programming is not easy!

Things to consider:
Is my application computationally intensive enough?
What are the levels of parallelism?
Howmuch data needs to be transferred?
Is the gainworth the pain?

Member of the Helmholtz Association 6 November 2024 Slide 16 49

Alternatives
The twilight

There are GPU programmingmodels, which can ease the pain…
OpenACC, OpenMP
Thrust
Kokkos, RAJA, ALPAKA, SYCL, DPC++, pSTL
PyCUDA, Cupy, Numba
CUDA Fortran
HIP, CUDA
OpenCL

Member of the Helmholtz Association 6 November 2024 Slide 17 49

Programming GPUs
Directives

GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

OpenACC: Especially for GPUs;OpenMP: Has GPU support
Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
A little harder to debug

Member of the Helmholtz Association 6 November 2024 Slide 19 49

GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

OpenACC: Especially for GPUs;OpenMP: Has GPU support
Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
A little harder to debug

Member of the Helmholtz Association 6 November 2024 Slide 19 49

GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

OpenACC: Especially for GPUs;OpenMP: Has GPU support
Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
A little harder to debug

Member of the Helmholtz Association 6 November 2024 Slide 19 49

GPU Programming with Directives
The power of… two.

OpenMP Standard for multithread programming on CPU, GPU since 4.0, better since 4.5
#pragma omp target map(tofrom:y), map(to:x)
#pragma omp teams num_teams(10) num_threads(10)
#pragma omp distribute
for () {

#pragma omp parallel for
for () {
// …
}

}

OpenACC Similar to OpenMP, but more specifically for GPUs
For C/C++ and Fortran

Member of the Helmholtz Association 6 November 2024 Slide 20 49

OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc kernels
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

Member of the Helmholtz Association 6 November 2024 Slide 21 49

OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc parallel loop copy(y) copyin(x)
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

Member of the Helmholtz Association 6 November 2024 Slide 21 49

OpenACC / OpenMP
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc kernels
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

float a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

Member of the Helmholtz Association 6 November 2024 Slide 22 49

OpenACC / OpenMP
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma omp target map(to:x[0:n]) map(tofrom:y[0:n]) loop
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

float a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

Member of the Helmholtz Association 6 November 2024 Slide 22 49

Programming GPUs
Kokkos

Performance Portability
Performant Single Source Implementation

Host Kernels

Kokkos

JUPITER
NVIDIA (ARMv9)
NVIDIA (CUDA)

Host Data

Device Data
Structures

JUWELS

AMD (x64)
NVIDIA (CUDA)

LUMI

AMD (x64)
AMD (HIP)

HUNTER

AMD (x64)
AMD (HIP)

SUPERMUC

Intel (x64, HBM)
Intel (PVC)

Device Data
Structures

Thread
Configuration Kernel Scheduling

Member of the Helmholtz Association 6 November 2024 Slide 24 49

History and Support

Established 2012

Widely used in HPC, especially US
Exascale Computing Project ECP

Support for most major HPC platforms

Nowmoving into Linux Foundation
Feedback loop with C++ Standards

Parallel STL
std::atomic_ref
std::mdspan and std::mdarray

Online Presence

https://github.com/kokkos
Primary Github Organization

https://kokkosteam.slack.com
Slack Channel for Kokkos

Member of the Helmholtz Association 6 November 2024 Slide 25 49

https://github.com/kokkos
https://kokkosteam.slack.com

First Look
Hello, World!

struct functor {
__host__ __device__ void operator()(const int i) const {
Kokkos::printf("Hello from i = %i\n", i);

}};

int main(int argc, char* argv[]) {
Kokkos::initialize(argc, argv);
Kokkos::parallel_for("HelloWorld", 8, functor());
Kokkos::finalize();

}

Output
Hello from i = 0
Hello from i = 1
Hello from i = 2
Hello from i = 3
Hello from i = 4
Hello from i = 5
Hello from i = 6
Hello from i = 7

Member of the Helmholtz Association 6 November 2024 Slide 26 49

Programming GPUs
CUDA C/C++

Preface: CPU
A simple CPU program!

SAXPY: ~y = a~x + ~y, with single precision
Part of LAPACK BLAS Level 1
void saxpy(int n, float a, float * x, float * y) {

for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy(n, a, x, y);

Member of the Helmholtz Association 6 November 2024 Slide 28 49

http://www.netlib.org/lapack/

CUDA SAXPY
With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Member of the Helmholtz Association 6 November 2024 Slide 29 49

CUDA SAXPY
With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Specify kernel

ID variables

Guard against
too many threads

Allocate GPU-capable
memory

Call kernel
2 blocks, each 5 threads

Wait for
kernel to finish

Member of the Helmholtz Association 6 November 2024 Slide 30 49

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 6 November 2024 Slide 31 49

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Thread

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 6 November 2024 Slide 31 49

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 6 November 2024 Slide 31 49

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 6 November 2024 Slide 31 49

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Block

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

0

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 6 November 2024 Slide 31 49

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 6 November 2024 Slide 31 49

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 6 November 2024 Slide 31 49

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 6 November 2024 Slide 31 49

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 6 November 2024 Slide 31 49

Kernel Functions

Kernel: Parallel GPU function
Executed by each thread
In parallel
Called from host or device

All threads execute same code; but can take different paths in program flow (some penalty)
Info about thread: local, global IDs
int currentThreadId = threadIdx.x;
float x = input[currentThreadId];
output[currentThreadId] = x*x;

Member of the Helmholtz Association 6 November 2024 Slide 32 49

Kernel Functions

Kernel: Parallel GPU function
Executed by each thread
In parallel
Called from host or device

All threads execute same code; but can take different paths in program flow (some penalty)

Info about thread: local, global IDs
int currentThreadId = threadIdx.x;
float x = input[currentThreadId];
output[currentThreadId] = x*x;

Member of the Helmholtz Association 6 November 2024 Slide 32 49

Kernel Functions

Kernel: Parallel GPU function
Executed by each thread
In parallel
Called from host or device

All threads execute same code; but can take different paths in program flow (some penalty)
Info about thread: local, global IDs
int currentThreadId = threadIdx.x;
float x = input[currentThreadId];
output[currentThreadId] = x*x;

Member of the Helmholtz Association 6 November 2024 Slide 32 49

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops

void scale(float scale, float * in, float * out, int N) {
for (int i = 0; i < N; i++)

out[i] = scale * in[i];
}

Member of the Helmholtz Association 6 November 2024 Slide 33 49

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops

void scale(float scale, float * in, float * out, int N) {
for (

int i = 0;
i < N;
i++

)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 6 November 2024 Slide 33 49

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index

void scale(float scale, float * in, float * out, int N) {
int i = 0;
for (;

i < N;
i++

)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 6 November 2024 Slide 33 49

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition

void scale(float scale, float * in, float * out, int N) {
int i = 0;
for (;

;
i++

)
if (i < N)

out[i] = scale * in[i];
}

Member of the Helmholtz Association 6 November 2024 Slide 33 49

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for

void scale(float scale, float * in, float * out, int N) {
int i = 0;

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 6 November 2024 Slide 33 49

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

__global__ void scale(float scale, float * in, float * out, int N) {
int i = 0;

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 6 November 2024 Slide 33 49

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x;

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 6 November 2024 Slide 33 49

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x … including block configuration
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x + blockIdx.x * blockDim.x;

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 6 November 2024 Slide 33 49

Kernel Conversion
Summary

C function with explicit loop
void scale(float scale, float * in, float * out, int N) {

for (int i = 0; i < N; i++)
out[i] = scale * in[i];

}

CUDA kernel with implicit loop
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x + blockIdx.x * blockDim.x;
if (i < N)

out[i] = scale * in[i];
}

Member of the Helmholtz Association 6 November 2024 Slide 34 49

Kernel Launch

kernel<<<int gridDim, int blockDim>>>(...)

Parallel threads of kernel launched with triple-chevron syntax
Total number of threads, divided into

Number of blocks on the grid (gridDim)
Number of threads per block (blockDim)

Call returns immediately; kernel launch is asynchronous!
Example:
int nThreads = 32;
scale<<<N/nThreads, nThreads>>>(23, in, out, N)

Possibility for too many threads; include termination condition into kernel!

Member of the Helmholtz Association 6 November 2024 Slide 35 49

Kernel Launch

kernel<<<int gridDim, int blockDim>>>(...)

Parallel threads of kernel launched with triple-chevron syntax
Total number of threads, divided into

Number of blocks on the grid (gridDim)
Number of threads per block (blockDim)

Call returns immediately; kernel launch is asynchronous!
Example:
int nThreads = 32;
scale<<<N/nThreads, nThreads>>>(23, in, out, N)

Possibility for too many threads; include termination condition into kernel!

×

Member of the Helmholtz Association 6 November 2024 Slide 35 49

Kernel Launch

kernel<<<int gridDim, int blockDim>>>(...)

Parallel threads of kernel launched with triple-chevron syntax
Total number of threads, divided into

Number of blocks on the grid (gridDim)
Number of threads per block (blockDim)

Call returns immediately; kernel launch is asynchronous!

Example:
int nThreads = 32;
scale<<<N/nThreads, nThreads>>>(23, in, out, N)

Possibility for too many threads; include termination condition into kernel!

×

Member of the Helmholtz Association 6 November 2024 Slide 35 49

Kernel Launch

kernel<<<int gridDim, int blockDim>>>(...)

Parallel threads of kernel launched with triple-chevron syntax
Total number of threads, divided into

Number of blocks on the grid (gridDim)
Number of threads per block (blockDim)

Call returns immediately; kernel launch is asynchronous!
Example:
int nThreads = 32;
scale<<<N/nThreads, nThreads>>>(23, in, out, N)

Possibility for too many threads; include termination condition into kernel!

×

Member of the Helmholtz Association 6 November 2024 Slide 35 49

Kernel Launch

kernel<<<int gridDim, int blockDim>>>(...)

Parallel threads of kernel launched with triple-chevron syntax
Total number of threads, divided into

Number of blocks on the grid (gridDim)
Number of threads per block (blockDim)

Call returns immediately; kernel launch is asynchronous!
Example:
int nThreads = 32;
scale<<<N/nThreads, nThreads>>>(23, in, out, N)

Possibility for too many threads; include termination condition into kernel!

×

Member of the Helmholtz Association 6 November 2024 Slide 35 49

Full Kernel Launch
For Reference

kernel<<<dim3 gD, dim3 bD, size_t shared, cudaStream_t stream>>>(...)

2 additional, optional parameters

shared Dynamic sharedmemory
Small GPUmemory space; share data in block (high bandwidth)
Sharedmemory: allocate statically (compile time) or dynamically (run time)
size_t shared: bytes of shared memory allocated per block (in addition to static
sharedmemory)

stream Associated CUDA stream
CUDA streams enable different channels of communication with GPU
Can overlap in some cases (communication, computation)
cudaStream_t stream: ID of stream to use for this kernel launch

Member of the Helmholtz Association 6 November 2024 Slide 36 49

Full Kernel Launch
For Reference

kernel<<<dim3 gD, dim3 bD, size_t shared, cudaStream_t stream>>>(...)

2 additional, optional parameters
shared Dynamic sharedmemory

Small GPUmemory space; share data in block (high bandwidth)
Sharedmemory: allocate statically (compile time) or dynamically (run time)
size_t shared: bytes of shared memory allocated per block (in addition to static
sharedmemory)

stream Associated CUDA stream
CUDA streams enable different channels of communication with GPU
Can overlap in some cases (communication, computation)
cudaStream_t stream: ID of stream to use for this kernel launch

Member of the Helmholtz Association 6 November 2024 Slide 36 49

Full Kernel Launch
For Reference

kernel<<<dim3 gD, dim3 bD, size_t shared, cudaStream_t stream>>>(...)

2 additional, optional parameters
shared Dynamic sharedmemory

Small GPUmemory space; share data in block (high bandwidth)
Sharedmemory: allocate statically (compile time) or dynamically (run time)
size_t shared: bytes of shared memory allocated per block (in addition to static
sharedmemory)

stream Associated CUDA stream
CUDA streams enable different channels of communication with GPU
Can overlap in some cases (communication, computation)
cudaStream_t stream: ID of stream to use for this kernel launch

Member of the Helmholtz Association 6 November 2024 Slide 36 49

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops

void scale(float scale, float * in, float * out, int N) {
for (int i = 0; i < N; i++)

out[i] = scale * in[i];
}

Member of the Helmholtz Association 6 November 2024 Slide 37 49

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops

void scale(float scale, float * in, float * out, int N) {
for (

int i = 0;
i < N;
i++

)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 6 November 2024 Slide 37 49

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index

void scale(float scale, float * in, float * out, int N) {
int i = 0;
for (;

i < N;
i++

)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 6 November 2024 Slide 37 49

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition

void scale(float scale, float * in, float * out, int N) {
int i = 0;
for (;

;
i++

)
if (i < N)

out[i] = scale * in[i];
}

Member of the Helmholtz Association 6 November 2024 Slide 37 49

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for

void scale(float scale, float * in, float * out, int N) {
int i = 0;

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 6 November 2024 Slide 37 49

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

__global__ void scale(float scale, float * in, float * out, int N) {
int i = 0;

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 6 November 2024 Slide 37 49

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x;

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 6 November 2024 Slide 37 49

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x … including block configuration
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x + blockIdx.x * blockDim.x;

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 6 November 2024 Slide 37 49

Kernel Conversion
Summary

C function with explicit loop
void scale(float scale, float * in, float * out, int N) {

for (int i = 0; i < N; i++)
out[i] = scale * in[i];

}

CUDA kernel with implicit loop
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x + blockIdx.x * blockDim.x;
if (i < N)

out[i] = scale * in[i];
}

Member of the Helmholtz Association 6 November 2024 Slide 38 49

Grid Dimensions 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Threads & blocks in 3D3D3D3D

Create 3D configurations with struct dim3

dim3 blockOrGridDim(size_t dimX, size_t dimY, size_t dimZ)

Any unspecified component initialized to 1
Example:
dim3 blockDim(32, 32);
dim3 gridDim = {1000, 100};
Kernel call with dim3

kernel<<<dim3 gridDim, dim3 blockDim>>>(...)

Member of the Helmholtz Association 6 November 2024 Slide 39 49

Grid Dimensions 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Threads & blocks in 3D3D3D3D
Create 3D configurations with struct dim3

dim3 blockOrGridDim(size_t dimX, size_t dimY, size_t dimZ)

Any unspecified component initialized to 1

Example:
dim3 blockDim(32, 32);
dim3 gridDim = {1000, 100};
Kernel call with dim3

kernel<<<dim3 gridDim, dim3 blockDim>>>(...)

Member of the Helmholtz Association 6 November 2024 Slide 39 49

Grid Dimensions 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Threads & blocks in 3D3D3D3D
Create 3D configurations with struct dim3

dim3 blockOrGridDim(size_t dimX, size_t dimY, size_t dimZ)

Any unspecified component initialized to 1
Example:
dim3 blockDim(32, 32);
dim3 gridDim = {1000, 100};

Kernel call with dim3

kernel<<<dim3 gridDim, dim3 blockDim>>>(...)

Member of the Helmholtz Association 6 November 2024 Slide 39 49

Grid Dimensions 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Threads & blocks in 3D3D3D3D
Create 3D configurations with struct dim3

dim3 blockOrGridDim(size_t dimX, size_t dimY, size_t dimZ)

Any unspecified component initialized to 1
Example:
dim3 blockDim(32, 32);
dim3 gridDim = {1000, 100};
Kernel call with dim3

kernel<<<dim3 gridDim, dim3 blockDim>>>(...)

Member of the Helmholtz Association 6 November 2024 Slide 39 49

Grid Sizes
Block and grid sizes are hardware-dependent

For JSC GPUs: Tesla V100, A100, H100
Block ~NThread ≤ (1024x, 1024y, 64z)

|~NThread| = NThread ≤ 1024

Grid ~NBlocks ≤ (2147483647x, 65535y, 65535z) = (231, 216, 216) –~1

Find out yourself: deviceQuery example from CUDA Samples
Workflow: Chose 128 or 256 as block dim; calculate grid dim from problem size
int Nx = 1000, Ny = 1000;
dim3 blockDim(16, 16);
int gx = (Nx % blockDim.x == 0) Nx / blockDim.x : Nx / blockDim.x + 1;
int gy = (Ny % blockDim.y == 0) Ny / blockDim.y : Ny / blockDim.y + 1;
dim3 gridDim(gx, gy);
kernel<<<gridDim, blockDim>>>();

Member of the Helmholtz Association 6 November 2024 Slide 40 49

Grid Sizes
Block and grid sizes are hardware-dependent
For JSC GPUs: Tesla V100, A100, H100
Block ~NThread ≤ (1024x, 1024y, 64z)

|~NThread| = NThread ≤ 1024

Grid ~NBlocks ≤ (2147483647x, 65535y, 65535z) = (231, 216, 216) –~1

Find out yourself: deviceQuery example from CUDA Samples
Workflow: Chose 128 or 256 as block dim; calculate grid dim from problem size
int Nx = 1000, Ny = 1000;
dim3 blockDim(16, 16);
int gx = (Nx % blockDim.x == 0) Nx / blockDim.x : Nx / blockDim.x + 1;
int gy = (Ny % blockDim.y == 0) Ny / blockDim.y : Ny / blockDim.y + 1;
dim3 gridDim(gx, gy);
kernel<<<gridDim, blockDim>>>();

Member of the Helmholtz Association 6 November 2024 Slide 40 49

Grid Sizes
Block and grid sizes are hardware-dependent
For JSC GPUs: Tesla V100, A100, H100
Block ~NThread ≤ (1024x, 1024y, 64z)

|~NThread| = NThread ≤ 1024
Grid ~NBlocks ≤ (2147483647x, 65535y, 65535z) = (231, 216, 216) –~1

Find out yourself: deviceQuery example from CUDA Samples
Workflow: Chose 128 or 256 as block dim; calculate grid dim from problem size
int Nx = 1000, Ny = 1000;
dim3 blockDim(16, 16);
int gx = (Nx % blockDim.x == 0) Nx / blockDim.x : Nx / blockDim.x + 1;
int gy = (Ny % blockDim.y == 0) Ny / blockDim.y : Ny / blockDim.y + 1;
dim3 gridDim(gx, gy);
kernel<<<gridDim, blockDim>>>();

Member of the Helmholtz Association 6 November 2024 Slide 40 49

Grid Sizes
Block and grid sizes are hardware-dependent
For JSC GPUs: Tesla V100, A100, H100
Block ~NThread ≤ (1024x, 1024y, 64z)

|~NThread| = NThread ≤ 1024
Grid ~NBlocks ≤ (2147483647x, 65535y, 65535z) = (231, 216, 216) –~1

Find out yourself: deviceQuery example from CUDA Samples

Workflow: Chose 128 or 256 as block dim; calculate grid dim from problem size
int Nx = 1000, Ny = 1000;
dim3 blockDim(16, 16);
int gx = (Nx % blockDim.x == 0) Nx / blockDim.x : Nx / blockDim.x + 1;
int gy = (Ny % blockDim.y == 0) Ny / blockDim.y : Ny / blockDim.y + 1;
dim3 gridDim(gx, gy);
kernel<<<gridDim, blockDim>>>();

Member of the Helmholtz Association 6 November 2024 Slide 40 49

Grid Sizes
Block and grid sizes are hardware-dependent
For JSC GPUs: Tesla V100, A100, H100
Block ~NThread ≤ (1024x, 1024y, 64z)

|~NThread| = NThread ≤ 1024
Grid ~NBlocks ≤ (2147483647x, 65535y, 65535z) = (231, 216, 216) –~1

Find out yourself: deviceQuery example from CUDA Samples
Workflow: Chose 128 or 256 as block dim; calculate grid dim from problem size
int Nx = 1000, Ny = 1000;
dim3 blockDim(16, 16);
int gx = (Nx % blockDim.x == 0) Nx / blockDim.x : Nx / blockDim.x + 1;
int gy = (Ny % blockDim.y == 0) Ny / blockDim.y : Ny / blockDim.y + 1;
dim3 gridDim(gx, gy);
kernel<<<gridDim, blockDim>>>();

Member of the Helmholtz Association 6 November 2024 Slide 40 49

Hardware Threads
Mapping Software Threads to Hardware

Thread

CUDA Core

Thread Block

Multiprocessor (SM)

Grid

GPU Device

Member of the Helmholtz Association 6 November 2024 Slide 41 49

GPUMemory

Data needs to reach the GPU; many ways to do so
Progression

cudaMalloc() First: Manual transfers via dedicated API
cudaMallocManaged() Then: Automated transfers via dedicated API

malloc() Now: Automated transfers via usual API
malloc() has some caveats (system support) → Full CUDA Unified Memory Support

→ CUDA documentation Unified Memory Programming

Member of the Helmholtz Association 6 November 2024 Slide 42 49

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#unified-memory-programming

Memory Management
With Automated Transfers

Allocate memory to be used on GPU or CPU

cudaMallocManaged(T** ptr, size_t nBytes)

Data is copied to GPU or to CPU automatically (managed)

Example:
float * a;
int N = 2048;
cudaMallocManaged(&a, N * sizeof(float));

Free device memory

cudaFree(void* ptr)

Member of the Helmholtz Association 6 November 2024 Slide 43 49

Memory Management
With Automated Transfers

Allocate memory to be used on GPU or CPU

cudaMallocManaged(T** ptr, size_t nBytes)

Data is copied to GPU or to CPU automatically (managed)
Example:
float * a;
int N = 2048;
cudaMallocManaged(&a, N * sizeof(float));

Free device memory

cudaFree(void* ptr)

Member of the Helmholtz Association 6 November 2024 Slide 43 49

Memory Management
With Automated Transfers

Allocate memory to be used on GPU or CPU

cudaMallocManaged(T** ptr, size_t nBytes)

Data is copied to GPU or to CPU automatically (managed)
Example:
float * a;
int N = 2048;
cudaMallocManaged(&a, N * sizeof(float));

Free device memory

cudaFree(void* ptr)

Member of the Helmholtz Association 6 November 2024 Slide 43 49

Memory Management
With Manual Transfers

Allocate memory to be used on GPU

cudaMalloc(T** ptr, size_t nBytes)

Copy data between host↔ device

cudaMemcpy(void* dst, void* src, size_t nByte, enum cudaMemcpyKind dir)

Example:
float * a, * a_d;
int N = 2048;
// fill a
cudaMalloc(&a_d, N * sizeof(float));
cudaMemcpy(a_d, a, N * sizeof(float), cudaMemcpyHostToDevice);
kernel<<<1,1>>>(a_d, N);
cudaMemcpy(a , a_d, N * sizeof(float), cudaMemcpyDeviceToHost);

Member of the Helmholtz Association 6 November 2024 Slide 44 49

Memory Management
With Manual Transfers

Allocate memory to be used on GPU

cudaMalloc(T** ptr, size_t nBytes)

Copy data between host↔ device

cudaMemcpy(void* dst, void* src, size_t nByte, enum cudaMemcpyKind dir)

Example:
float * a, * a_d;
int N = 2048;
// fill a
cudaMalloc(&a_d, N * sizeof(float));
cudaMemcpy(a_d, a, N * sizeof(float), cudaMemcpyHostToDevice);
kernel<<<1,1>>>(a_d, N);
cudaMemcpy(a , a_d, N * sizeof(float), cudaMemcpyDeviceToHost);

Member of the Helmholtz Association 6 November 2024 Slide 44 49

Memory Management
With Manual Transfers

Allocate memory to be used on GPU

cudaMalloc(T** ptr, size_t nBytes)

Copy data between host↔ device

cudaMemcpy(void* dst, void* src, size_t nByte, enum cudaMemcpyKind dir)

Example:
float * a, * a_d;
int N = 2048;
// fill a
cudaMalloc(&a_d, N * sizeof(float));
cudaMemcpy(a_d, a, N * sizeof(float), cudaMemcpyHostToDevice);
kernel<<<1,1>>>(a_d, N);
cudaMemcpy(a , a_d, N * sizeof(float), cudaMemcpyDeviceToHost);

Member of the Helmholtz Association 6 November 2024 Slide 44 49

Manual Memory vs. Unified Memory

void sortfile(FILE *fp, int N) {
char *data;
char *data_d;

data = (char *)malloc(N);
cudaMalloc(&data_d, N);

fread(data, 1, N, fp);

cudaMemcpy(data_d, data, N, cudaMemcpyHostToDevice);
kernel<<<...>>>(data, N);

cudaMemcpy(data, data_d, N, cudaMemcpyDeviceToHost);
host_func(data)
cudaFree(data_d); free(data);

}

void sortfile(FILE *fp, int N) {
char *data;

cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data);

}

Member of the Helmholtz Association 6 November 2024 Slide 45 49

Exercises

Exercises TASK

Open fresh shell for today (reservation)
Call jsc-material-sync (pull in recent changes)

See $HOME/natESM/GPU-Course/CUDA
Read instructions!
Solutions given; you tinker as long as you want, then ask or check solutions
Timeline

CUDA until coffee break; solutions after break
OpenACC until lunch, solutions before/after?
Kokkos in afternoon

Member of the Helmholtz Association 6 November 2024 Slide 47 49

Jacobi Solver
Algorithmic description

Example for acceleration: Jacobi solver
Iterative solver, converges to correct value
Each iteration step: compute average of neighboring points
Example: 2D Poisson equation: ∇2A(x, y) = B(x, y)

Ai,j+1

Ai–1,j

Ai,j–1

Ai+1,j

Data Point
Boundary Point
Stencil

Ak+1(i, j) = –
1
4
(B(i, j) – (Ak (i – 1, j) + Ak (i, j + 1), +Ak (i + 1, j) + Ak (i, j – 1)))

Member of the Helmholtz Association 6 November 2024 Slide 48 49

GPU Programming

Many ways of doing it!
CUDA: Native programmingmodel
OpenACC: High-level abstraction, with some portability; simple
Kokkos: Dedicated programmingmodel, performance-portability, C++
Pick your poison!

Member of the Helmholtz Association 6 November 2024 Slide 49 49

Appendix

Appendix
Glossary
References

Member of the Helmholtz Association 6 November 2024 Slide 2 8

Glossary I

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA C/C++.
2, 48, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 92, 93, 94, 108, 109, 110, 111, 112,
128

NVIDIA US technology company creating GPUs. 18, 19, 20, 128, 129, 130
NVLink NVIDIA’s communication protocol connecting CPU↔ GPU and GPU↔ GPUwith

high bandwidth. 130

OpenACC Directive-based programming, primarily for many-core machines. 48, 50, 51, 52,
53, 54, 55, 56, 57

OpenCL The Open Computing Language. Framework for writing code for heterogeneous
architectures (CPU, GPU, DSP, FPGA). The alternative to CUDA. 48

Member of the Helmholtz Association 6 November 2024 Slide 3 8

Glossary II

OpenMP Directive-based programming, primarily for multi-threadedmachines. 48, 50, 51,
52, 53, 56, 57

SAXPY Single-precisionA× X + Y. A simple code example of scaling a vector and adding
an offset. 63, 64, 65

Tesla The GPU product line for general purpose computing computing of NVIDIA. 108,
109, 110, 111, 112

Thrust A parallel algorithms library for (among others) GPUs. See
https://thrust.github.io/. 48

Member of the Helmholtz Association 6 November 2024 Slide 4 8

https://thrust.github.io/

Glossary III

V100 A large GPU with the Volta architecture from NVIDIA. It employs NVLink 2 as its
interconnect and has fast HBM2memory. Additionally, it features Tensorcores for
Deep Learning and Independent Thread Scheduling. 108, 109, 110, 111, 112

Volta GPU architecture from NVIDIA (announced 2017). 130

CPU Central Processing Unit. 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 53, 63, 115, 116, 117,
128

GPU Graphics Processing Unit. 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25,
28, 29, 30, 31, 32, 42, 49, 50, 51, 52, 53, 58, 62, 65, 75, 76, 77, 92, 93, 94, 108, 109,
110, 111, 112, 115, 116, 117, 118, 119, 120, 128, 129, 130

SIMD Single Instruction, Multiple Data. 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Member of the Helmholtz Association 6 November 2024 Slide 5 8

Glossary IV

SIMT Single Instruction, Multiple Threads. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20

SM Streaming Multiprocessor. 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

SMT Simultaneous Multithreading. 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Member of the Helmholtz Association 6 November 2024 Slide 6 8

References I

Member of the Helmholtz Association 6 November 2024 Slide 7 8

References: Images, Graphics I

Member of the Helmholtz Association 6 November 2024 Slide 8 8

	Outline
	Platform
	Programming GPUs
	Libraries
	*gpu programming models
	Directives
	Kokkos
	CUDA C/C++
	Parallel Model
	Kernels
	Grid, Blocks
	Memory Management

	Exercises
	Conclusions
	Appendix
	Appendix
	Glossary

	Glossary
	Acronyms
	References

