
INTRODUCTION TO OPENACC
NATESM TRAININGWORKSHOP
6 November 2024 Andreas Herten, Kaveh Haghighi Mood Forschungszentrum Jülich

Member of the Helmholtz Association

Outline
Introduction

OpenMP vs OpenACC
Modus Operandi
A Glimpse

Directives
Compute

parallel
loops
kernels

Memory
data

Further
Clause: gang

Exercise
Conclusions
List of Tasks

Member of the Helmholtz Association 6 November 2024 Slide 1 26

Open{MP↔ACC}
Everything’s connected

OpenACCmodeled after OpenMP …
…but specific for accelerators
OpenMP 4.0/4.5: Offloading; compiler support improving (Clang, XL, GCC,…)

OpenACCmore descriptive, OpenMPmore prescriptive
OpenMP 5.0: Descriptive directive loop

Same basic principle: Fork/join model
Master thread launches parallel child threads; merge after execution

master masterfo
rk

parallel

jo
in

OpenMP

master masterfo
rk

parallel

jo
in

OpenACC

Member of the Helmholtz Association 6 November 2024 Slide 2 26

Open{MP↔ACC}
Everything’s connected

OpenACCmodeled after OpenMP …
…but specific for accelerators
OpenMP 4.0/4.5: Offloading; compiler support improving (Clang, XL, GCC,…)

OpenACCmore descriptive, OpenMPmore prescriptive
OpenMP 5.0: Descriptive directive loop

Same basic principle: Fork/join model
Master thread launches parallel child threads; merge after execution

master masterfo
rk

parallel
jo
in

OpenMP

master masterfo
rk

parallel

jo
in

OpenACC

Member of the Helmholtz Association 6 November 2024 Slide 2 26

Open{MP↔ACC}
Everything’s connected

OpenACCmodeled after OpenMP …
…but specific for accelerators
OpenMP 4.0/4.5: Offloading; compiler support improving (Clang, XL, GCC,…)

OpenACCmore descriptive, OpenMPmore prescriptive
OpenMP 5.0: Descriptive directive loop

Same basic principle: Fork/join model
Master thread launches parallel child threads; merge after execution

master masterfo
rk

parallel
jo
in

OpenMP

master masterfo
rk

parallel

jo
in

OpenACC

Member of the Helmholtz Association 6 November 2024 Slide 2 26

Introduction
Modus Operandi

OpenACC Acceleration Workflow
Three-step program

1 Annotate code with directives, indicating parallelism
2 OpenACC-capable compiler generates accelerator-specific code
3 $uccess

Member of the Helmholtz Association 6 November 2024 Slide 4 26

1 Directives
pragmatic

Compiler directives state intend to compiler
C/C++
#pragma acc kernels
for (int i = 0; i < 23; i++)
// ...

Fortran
!$acc kernels
do i = 1, 24
! ...
!$acc end kernels

Ignored by compiler which does not understand OpenACC
OpenACC: Compiler directives, library routines, environment variables
Portable across host systems and accelerator architectures

Member of the Helmholtz Association 6 November 2024 Slide 5 26

2 Compiler
Simple and abstracted

Trust compiler to generate intended parallelism; always check status output!
No need to know details of accelerator; leave it to expert compiler engineersTuning possible

One code can target different accelerators: GPUs, CPUs→ Portability

Compiler Targets Languages OSS Free Comment

NVIDIA GPU, CPU C, C++, Fortran No Yes Best performance

GCC NVIDIA GPU, AMD GPU C, C++, Fortran Yes Yes

HPE Cray NVIDIA GPU Fortran No No ???

Clang/LLVM CPU, NVIDIA GPU C, C++. Fortran Yes Yes Via Clang
OpenMP backend

Member of the Helmholtz Association 6 November 2024 Slide 6 26

https://gcc.gnu.org/wiki/OpenACC
https://cpe.ext.hpe.com/docs/cce/man7/intro_openacc.7.html
https://csmd.ornl.gov/project/clacc

2 Compiler
Simple and abstracted

Trust compiler to generate intended parallelism; always check status output!
No need to know details of accelerator; leave it to expert compiler engineersTuning possible

One code can target different accelerators: GPUs, CPUs→ Portability

Compiler Targets Languages OSS Free Comment

NVIDIA HPC SDK NVIDIA GPU, CPU C, C++, Fortran No Yes Best performance

GCC NVIDIA GPU, AMD GPU C, C++, Fortran Yes Yes

HPE Cray NVIDIA GPU Fortran No No ???

Clang/LLVM CPU, NVIDIA GPU C, C++. Fortran Yes Yes Via Clang
OpenMP backend

Member of the Helmholtz Association 6 November 2024 Slide 6 26

https://developer.nvidia.com/hpc-sdk
https://gcc.gnu.org/wiki/OpenACC
https://cpe.ext.hpe.com/docs/cce/man7/intro_openacc.7.html
https://csmd.ornl.gov/project/clacc

2 Compiler
Simple and abstracted

Trust compiler to generate intended parallelism; always check status output!
No need to know details of accelerator; leave it to expert compiler engineersTuning possible

One code can target different accelerators: GPUs, CPUs→ Portability

Compiler Targets Languages OSS Free Comment

NVHPC NVIDIA GPU, CPU C, C++, Fortran No Yes Best performance

GCC NVIDIA GPU, AMD GPU C, C++, Fortran Yes Yes

HPE Cray NVIDIA GPU Fortran No No ???

Clang/LLVM CPU, NVIDIA GPU C, C++. Fortran Yes Yes Via Clang
OpenMP backend

Member of the Helmholtz Association 6 November 2024 Slide 6 26

https://developer.nvidia.com/hpc-sdk
https://gcc.gnu.org/wiki/OpenACC
https://cpe.ext.hpe.com/docs/cce/man7/intro_openacc.7.html
https://csmd.ornl.gov/project/clacc

2 Compiler
Flags and options

OpenACC compiler support: activate with compile flag
NVHPC nvc -acc

-acc=gpu|multicore Target GPU or CPU
-acc=gpu -gpu=cc80 Generate Ampere-compatible code
-gpu=cc80,lineinfo Add source code correlation into binary

-gpu=managed Use unified memory
-Minfo=accel Print acceleration info

GCC gcc -fopenacc

-fopenacc-dim=geom Use geom configuration for threads
-foffload="-lm -O3" Provide flags to offload compiler

-fopt-info-omp Print acceleration info

Member of the Helmholtz Association 6 November 2024 Slide 7 26

3 $uccess
Iteration is key

Serial to parallel: fast
Serial to fast parallel: more time needed
Start simple→ refine
Expose more andmore parallelism

⇒ Productivity

Because of generality: Sometimes not last bit of hardware performance accessible
But: Use OpenACC together with other accelerator-targeting techniques (CUDA, libraries, …)

Expose
Parallelism

CompileMeasure

Member of the Helmholtz Association 6 November 2024 Slide 8 26

A Glimpse of OpenACC

#pragma acc data copy(x[0:N],y[0:N])
#pragma acc parallel loop
{

for (int i=0; i<N; i++) {
x[i] = 1.0;
y[i] = 2.0;

}
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
}

}

!$acc data copy(x(1:N),y(1:N))
!$acc parallel loop

do i = 1, N
x(i) = 1.0
y(i) = 2.0

end do
do i = 1, N

y(i) = i*x(i)+y(i);
end do

!$acc end parallel loop
!$acc end data

Member of the Helmholtz Association 6 November 2024 Slide 9 26

Parallel Loops: Parallel
An important directive

Programmer identifies block containing parallelism
→ compiler generates offload code
Program launch creates gangs of parallel threads on parallel device
Implicit barrier at end of parallel region
Each gang executes same code sequentially

C OpenACC: parallel

#pragma acc parallel [clause, [, clause] ...] newline
{structured block}

Member of the Helmholtz Association 6 November 2024 Slide 10 26

Parallel Loops: Parallel
An important directive

Programmer identifies block containing parallelism
→ compiler generates offload code
Program launch creates gangs of parallel threads on parallel device
Implicit barrier at end of parallel region
Each gang executes same code sequentially

F OpenACC: parallel

!$acc parallel [clause, [, clause] ...]
!$acc end parallel

Member of the Helmholtz Association 6 November 2024 Slide 10 26

Parallel Loops: Parallel
An important directive

Programmer identifies block containing parallelism
→ compiler generates offload code
Program launch creates gangs of parallel threads on parallel device
Implicit barrier at end of parallel region
Each gang executes same code sequentially

F OpenACC: parallel

!$acc parallel [clause, [, clause] ...]
!$acc end parallel

Member of the Helmholtz Association 6 November 2024 Slide 10 26

Parallel Loops: Parallel
Clauses

Diverse clauses to augment the parallel region
private(var) A copy of variables var is made for each gang

firstprivate(var) Same as private, except varwill initialized with value from host
if(cond) Parallel region will execute on accelerator only if cond is true

reduction(op:var) Reduction is performed on variable varwith operation op; supported: +
* max min …

async[(int)] No implicit barrier at end of parallel region

Member of the Helmholtz Association 6 November 2024 Slide 11 26

Parallel Loops: Loops
Also an important directive

Programmer identifies loop eligible for parallelization
Directive must be directly before loop
Optional: Describe type of parallelism

C OpenACC: loop

#pragma acc loop [clause, [, clause] ...] newline
{structured block}

Member of the Helmholtz Association 6 November 2024 Slide 12 26

Parallel Loops: Loops
Also an important directive

Programmer identifies loop eligible for parallelization
Directive must be directly before loop
Optional: Describe type of parallelism

F OpenACC: loop

!$acc loop [clause, [, clause] ...]
!$acc end loop

Member of the Helmholtz Association 6 November 2024 Slide 12 26

Parallel Loops: Loops
Clauses

independent Iterations of loop are data-independent (implied if in parallel region
(and no seq or auto))

collapse(int) Collapse int tightly-nested loops
seq This loop is to be executed sequentially (not parallel)

tile(int[,int]) Split loops into loops over tiles of the full size
auto Compiler decides what to do

Member of the Helmholtz Association 6 November 2024 Slide 13 26

Parallel Loops: Parallel Loops
Maybe themost important directive

Combined directive: shortcut
Because its used so often
Any clause that is allowed on parallel or loop allowed
Restriction: May not appear in body of another parallel region

C OpenACC: parallel loop

#pragma acc parallel loop [clause, [, clause] ...] newline
{structured block}

Member of the Helmholtz Association 6 November 2024 Slide 14 26

Parallel Loops: Parallel Loops
Maybe themost important directive

Combined directive: shortcut
Because its used so often
Any clause that is allowed on parallel or loop allowed
Restriction: May not appear in body of another parallel region

F OpenACC: parallel loop

!$acc parallel loop [clause, [, clause] ...]
!$acc end parallel loop

Member of the Helmholtz Association 6 November 2024 Slide 14 26

Parallel Loops: Parallel Loops
Maybe themost important directive

Combined directive: shortcut
Because its used so often
Any clause that is allowed on parallel or loop allowed
Restriction: May not appear in body of another parallel region

 OpenACC: parallel loop

#pragma acc parallel loop [clause, [, clause] ...]

Member of the Helmholtz Association 6 November 2024 Slide 14 26

Parallel Loops Example

double sum = 0.0;
#pragma acc parallel loop
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}

#pragma acc parallel loop reduction(+:sum)
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
sum+=y[i];

}

sum = 0.0
!$acc parallel loop
do i = 1, N

x(i) = 1.0
y(i) = 2.0

end do
!$acc end parallel loop
!$acc parallel loop reduction(+:sum)
do i = 1, N

y(i) = i*x(i)+y(i)
sum+=y(i)

end do
!$acc end parallel loop

Member of the Helmholtz Association 6 November 2024 Slide 15 26

Parallel Loops Example

double sum = 0.0;
#pragma acc parallel loop
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}

#pragma acc parallel loop reduction(+:sum)
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
sum+=y[i];

}

sum = 0.0
!$acc parallel loop
do i = 1, N

x(i) = 1.0
y(i) = 2.0

end do
!$acc end parallel loop
!$acc parallel loop reduction(+:sum)
do i = 1, N

y(i) = i*x(i)+y(i)
sum+=y(i)

end do
!$acc end parallel loop

Kernel 1

Kernel 2

Member of the Helmholtz Association 6 November 2024 Slide 15 26

More Parallelism: Kernels
More freedom for compiler

Kernels directive: second way to expose parallelism
Regionmay contain parallelism
Compiler determines parallelization opportunities

→ More freedom for compiler
Rest: Same as for parallel

 OpenACC: kernels

#pragma acc kernels [clause, [, clause] ...]

Member of the Helmholtz Association 6 November 2024 Slide 16 26

Kernels Example

double sum = 0.0;
#pragma acc kernels
{
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
sum+=y[i];

}
}

Kernels created here

Member of the Helmholtz Association 6 November 2024 Slide 17 26

kernels vs. parallel
Both approaches equally valid; can perform equally well

kernels
Compiler performs parallel analysis
Can cover large area of code with single directive
Gives compiler additional leeway

parallel
Requires parallel analysis by programmer
Will also parallelize what compiler maymiss
More explicit
Similar to OpenMP

Both regions may not contain other kernels/parallel regions
No branching into or out
Programmust not depend on order of evaluation of clauses
At most: One if clause

Member of the Helmholtz Association 6 November 2024 Slide 18 26

kernels vs. parallel
Both approaches equally valid; can perform equally well
kernels

Compiler performs parallel analysis
Can cover large area of code with single directive
Gives compiler additional leeway

parallel
Requires parallel analysis by programmer
Will also parallelize what compiler maymiss
More explicit
Similar to OpenMP

Both regions may not contain other kernels/parallel regions
No branching into or out
Programmust not depend on order of evaluation of clauses
At most: One if clause

Member of the Helmholtz Association 6 November 2024 Slide 18 26

kernels vs. parallel
Both approaches equally valid; can perform equally well
kernels

Compiler performs parallel analysis
Can cover large area of code with single directive
Gives compiler additional leeway

parallel
Requires parallel analysis by programmer
Will also parallelize what compiler maymiss
More explicit
Similar to OpenMP

Both regions may not contain other kernels/parallel regions
No branching into or out
Programmust not depend on order of evaluation of clauses
At most: One if clause

Member of the Helmholtz Association 6 November 2024 Slide 18 26

Data Regions
Structured Data Regions

Defines region of code in which data remains on device
Data is shared among all kernels in region
Explicit data transfers

 OpenACC: data

#pragma acc data [clause, [, clause] ...]

Member of the Helmholtz Association 6 November 2024 Slide 19 26

Data Regions
Clauses

Clauses to augment the data regions
copy(var) Allocates memory of var on GPU, copies data to GPU at beginning of region,

copies data to host at end of region
Specifies size of var: var[lowerBound:size]

copyin(var) Allocates memory of var on GPU, copies data to GPU at beginning of region
copyout(var) Allocates memory of var on GPU, copies data to host at end of region
create(var) Allocates memory of var on GPU
present(var) Data of var is not copies automatically to GPU but considered present

Member of the Helmholtz Association 6 November 2024 Slide 20 26

Data Region Example

#pragma acc data copyout(y[0:N]) create(x[0:N])
{
double sum = 0.0;
#pragma acc parallel loop
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}

#pragma acc parallel loop
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
}
}

!$acc data copyout(y(1:N)) create(x(1,N))

sum = 0.0;
!$acc parallel loop
do i = 1, N

x(i) = 1.0
y(i) = 2.0

end do
!$acc end parallel loop
!$acc parallel loop
do i = 1, N

y(i) = i*x(i)+y(i)
end do
!$acc end parallel loop
!$acc end data

Member of the Helmholtz Association 6 November 2024 Slide 21 26

Further Keywords
Directives
serial Serial GPU Region

wait Wait for any async operation
atomic Atomically access data (no

interference of concurrent accesses)
cache Fetch data to GPU caches

declare Make data live on GPU for implicit
region directly after variable
declaration

update Update device data
shutdown Shutdown connection to GPU

Clauses
gang worker vector Type of

parallelism
collapse Combine tightly-nested loops

tile Split loop into two loops
(first)private Create thread-private

data (and init)
attach Reference counting for data

pointers
async Schedule operation

asynchronously

Member of the Helmholtz Association 6 November 2024 Slide 22 26

Further Keywords
Directives
serial Serial GPU Region

wait Wait for any async operation
atomic Atomically access data (no

interference of concurrent accesses)
cache Fetch data to GPU caches

declare Make data live on GPU for implicit
region directly after variable
declaration

update Update device data
shutdown Shutdown connection to GPU

Clauses
gang worker vector Type of

parallelism
collapse Combine tightly-nested loops

tile Split loop into two loops
(first)private Create thread-private

data (and init)
attach Reference counting for data

pointers
async Schedule operation

asynchronously

Member of the Helmholtz Association 6 November 2024 Slide 22 26

Further Keywords
Directives
serial Serial GPU Region

wait Wait for any async operation
atomic Atomically access data (no

interference of concurrent accesses)
cache Fetch data to GPU caches

declare Make data live on GPU for implicit
region directly after variable
declaration

update Update device data
shutdown Shutdown connection to GPU

Clauses
gang worker vector Type of

parallelism
collapse Combine tightly-nested loops

tile Split loop into two loops
(first)private Create thread-private

data (and init)
attach Reference counting for data

pointers
async Schedule operation

asynchronously

Member of the Helmholtz Association 6 November 2024 Slide 22 26

Launch Configuration
Specify number of threads and blocks

3 clauses for changing distribution of group of
threads (clauses of parallel region (parallel,
kernels))
Presence of keyword: Distribute using this level
Optional size: Control size of parallel entity

Gang

$

Workers

Vector

 OpenACC: gang worker vector

#pragma acc parallel loop gang worker vector
Size: num_gangs(n), num_workers(n), vector_length(n)

Member of the Helmholtz Association 6 November 2024 Slide 23 26

Exercise TASK

See $HOME/natESM/GPU-Course/OpenACC
Read instructions!
Solutions given; you tinker as long as you want, then ask or check solutions
Timeline reminder

CUDA until coffee break; solutions after break
OpenACC until lunch, solutions before/after?
Kokkos in afternoon

Member of the Helmholtz Association 6 November 2024 Slide 24 26

Conclusions

Conclusions

OpenACC directives and clauses
#pragma acc parallel loop copyin(A[0:N]) reduction(max:err) vector
Start easy, optimize from there; express as much parallelism as possible
Optimize data for locality, prevent unnecessary movements
OpenACC is interoperable to other GPU programmingmodels

Member of the Helmholtz Association 6 November 2024 Slide 26 26

Conclusions

OpenACC directives and clauses
#pragma acc parallel loop copyin(A[0:N]) reduction(max:err) vector
Start easy, optimize from there; express as much parallelism as possible
Optimize data for locality, prevent unnecessary movements
OpenACC is interoperable to other GPU programmingmodels

Thank you

for your att
ention!

a.herten@fz-juelich.de

Member of the Helmholtz Association 6 November 2024 Slide 26 26

mailto:a.herten@fz-juelich.de

Appendix
List of Tasks
Glossary
References

Member of the Helmholtz Association 6 November 2024 Slide 1 6

List of Tasks

Member of the Helmholtz Association 6 November 2024 Slide 2 6

Glossary I
AMD Manufacturer of CPUs and GPUs. 9, 10, 11

Ampere GPU architecture from NVIDIA (announced 2019). 12

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA C/C++.
13

GCC The GNU Compiler Collection, the collection of open source compilers, among
others for C and Fortran. 12

LLVM An open Source compiler infrastructure, providing, among others, Clang for C. 9,
10, 11

NVHPC NVIDIA HPC SDK; Collection of GPU-capable compilers and libraries. Formerly
known as PGI.. 12

Member of the Helmholtz Association 6 November 2024 Slide 3 6

Glossary II
NVIDIA US technology company creating GPUs. 9, 10, 11, 45, 46

OpenACC Directive-based programming, primarily for many-core machines. 3, 4, 5, 7, 8, 12,
13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 27, 32, 38, 41, 42

OpenMP Directive-based programming, primarily for multi-threadedmachines. 3, 4, 5, 9, 10,
11, 29, 30, 31

PGI Compiler creators. Formerly The Portland Group, Inc.; since 2013 part of NVIDIA. 45
POWER CPU architecture from IBM, earlier: PowerPC. See also POWER8. 46

POWER8 Version 8 of IBM’s POWER processor, available also within the OpenPOWER
Foundation. 46

CPU Central Processing Unit. 9, 10, 11, 45, 46

GPU Graphics Processing Unit. 9, 10, 11, 33, 41, 42, 45, 46

Member of the Helmholtz Association 6 November 2024 Slide 4 6

References I

Member of the Helmholtz Association 6 November 2024 Slide 5 6

References: Images, Graphics

Member of the Helmholtz Association 6 November 2024 Slide 6 6

	Outline
	Introduction
	OpenMP vs OpenACC
	Modus Operandi
	A Glimpse

	Directives
	Compute
	Directive: Parallel
	Directive: Loops
	Directive: Kernels

	Memory
	Directive: data

	Further
	Clause: gang worker vector

	Exercise
	Conclusions
	Appendix
	Appendix
	List of Tasks
	Glossary

	Glossary
	Acronyms
	References

