001032346 001__ 1032346
001032346 005__ 20250203133241.0
001032346 0247_ $$2doi$$a10.1016/j.actamat.2024.120455
001032346 0247_ $$2ISSN$$a1359-6454
001032346 0247_ $$2ISSN$$a1873-2453
001032346 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06168
001032346 0247_ $$2WOS$$aWOS:001349894500001
001032346 037__ $$aFZJ-2024-06168
001032346 082__ $$a670
001032346 1001_ $$0P:(DE-HGF)0$$aSong, Hengxu$$b0
001032346 245__ $$aEnabling quantitative analysis of in situ TEM experiments: A high-throughput, deep learning-based approach tailored to the dynamics of dislocations
001032346 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
001032346 3367_ $$2DRIVER$$aarticle
001032346 3367_ $$2DataCite$$aOutput Types/Journal article
001032346 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1731503756_25748
001032346 3367_ $$2BibTeX$$aARTICLE
001032346 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001032346 3367_ $$00$$2EndNote$$aJournal Article
001032346 520__ $$aIn situ TEM is by far the most commonly used microscopy method for imaging dislocations, i.e., line-like defects in crystalline materials. However, quantitative image analysis so far was not possible, implying that also statistical analyses were strongly limited. In this work, we created a deep learning-based digital twin of an in situ TEM straining experiment, additionally allowing to perform matching simulations. As application we extract spatio-temporal information of moving dislocations from experiments carried out on a Cantor high entropy alloy and investigate the universality class of plastic strain avalanches. We can directly observe “stick–slip motion” of single dislocations and compute the corresponding avalanche statistics. The distributions turn out to be scale-free, and the exponent of the power law distribution exhibits independence on the driving stress. The introduced methodology is entirely generic and has the potential to turn meso-scale TEM microscopy into a truly quantitative and reproducible approach.
001032346 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001032346 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001032346 7001_ $$0P:(DE-Juel1)187067$$aNguyen, Binh Duong$$b1
001032346 7001_ $$0P:(DE-Juel1)204587$$aGovind, Kishan$$b2$$ufzj
001032346 7001_ $$00000-0001-7180-4514$$aBerta, Dénes$$b3
001032346 7001_ $$00000-0002-9956-0061$$aIspánovity, Péter Dusán$$b4
001032346 7001_ $$0P:(DE-HGF)0$$aLegros, Marc$$b5
001032346 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, Stefan$$b6$$eCorresponding author
001032346 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2024.120455$$gVol. 282, p. 120455 -$$p120455 -$$tActa materialia$$v282$$x1359-6454$$y2025
001032346 8564_ $$uhttps://juser.fz-juelich.de/record/1032346/files/1-s2.0-S135964542400805X-main.pdf$$yOpenAccess
001032346 8767_ $$d2025-01-08$$eHybrid-OA$$jDEAL
001032346 909CO $$ooai:juser.fz-juelich.de:1032346$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001032346 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187067$$aForschungszentrum Jülich$$b1$$kFZJ
001032346 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)204587$$aForschungszentrum Jülich$$b2$$kFZJ
001032346 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b6$$kFZJ
001032346 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001032346 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001032346 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001032346 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001032346 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001032346 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001032346 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
001032346 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001032346 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
001032346 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-31
001032346 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-31
001032346 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-31
001032346 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-31
001032346 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2022$$d2024-12-31
001032346 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-31
001032346 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-31
001032346 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-31
001032346 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-31
001032346 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2022$$d2024-12-31
001032346 920__ $$lyes
001032346 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
001032346 9801_ $$aFullTexts
001032346 980__ $$ajournal
001032346 980__ $$aVDB
001032346 980__ $$aUNRESTRICTED
001032346 980__ $$aI:(DE-Juel1)IAS-9-20201008
001032346 980__ $$aAPC