Home > Publications database > Enabling quantitative analysis of in situ TEM experiments: A high-throughput, deep learning-based approach tailored to the dynamics of dislocations > print |
001 | 1032346 | ||
005 | 20250203133241.0 | ||
024 | 7 | _ | |a 10.1016/j.actamat.2024.120455 |2 doi |
024 | 7 | _ | |a 1359-6454 |2 ISSN |
024 | 7 | _ | |a 1873-2453 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-06168 |2 datacite_doi |
024 | 7 | _ | |a WOS:001349894500001 |2 WOS |
037 | _ | _ | |a FZJ-2024-06168 |
082 | _ | _ | |a 670 |
100 | 1 | _ | |a Song, Hengxu |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Enabling quantitative analysis of in situ TEM experiments: A high-throughput, deep learning-based approach tailored to the dynamics of dislocations |
260 | _ | _ | |a Amsterdam [u.a.] |c 2025 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1731503756_25748 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In situ TEM is by far the most commonly used microscopy method for imaging dislocations, i.e., line-like defects in crystalline materials. However, quantitative image analysis so far was not possible, implying that also statistical analyses were strongly limited. In this work, we created a deep learning-based digital twin of an in situ TEM straining experiment, additionally allowing to perform matching simulations. As application we extract spatio-temporal information of moving dislocations from experiments carried out on a Cantor high entropy alloy and investigate the universality class of plastic strain avalanches. We can directly observe “stick–slip motion” of single dislocations and compute the corresponding avalanche statistics. The distributions turn out to be scale-free, and the exponent of the power law distribution exhibits independence on the driving stress. The introduced methodology is entirely generic and has the potential to turn meso-scale TEM microscopy into a truly quantitative and reproducible approach. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Nguyen, Binh Duong |0 P:(DE-Juel1)187067 |b 1 |
700 | 1 | _ | |a Govind, Kishan |0 P:(DE-Juel1)204587 |b 2 |u fzj |
700 | 1 | _ | |a Berta, Dénes |0 0000-0001-7180-4514 |b 3 |
700 | 1 | _ | |a Ispánovity, Péter Dusán |0 0000-0002-9956-0061 |b 4 |
700 | 1 | _ | |a Legros, Marc |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Sandfeld, Stefan |0 P:(DE-Juel1)186075 |b 6 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.actamat.2024.120455 |g Vol. 282, p. 120455 - |0 PERI:(DE-600)2014621-8 |p 120455 - |t Acta materialia |v 282 |y 2025 |x 1359-6454 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1032346/files/1-s2.0-S135964542400805X-main.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1032346 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)187067 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)204587 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)186075 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DEAL: Elsevier 09/01/2023 |2 APC |0 PC:(DE-HGF)0125 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-26 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-31 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACTA MATER : 2022 |d 2024-12-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-31 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-31 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ACTA MATER : 2022 |d 2024-12-31 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-9-20201008 |k IAS-9 |l Materials Data Science and Informatics |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-9-20201008 |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|