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In situ TEM is by far the most commonly used microscopy method for imaging dislocations, i.e., line-like
defects in crystalline materials. However, quantitative image analysis so far was not possible, implying that
also statistical analyses were strongly limited. In this work, we created a deep learning-based digital twin of
an in situ TEM straining experiment, additionally allowing to perform matching simulations. As application
we extract spatio-temporal information of moving dislocations from experiments carried out on a Cantor high
entropy alloy and investigate the universality class of plastic strain avalanches. We can directly observe “stick—
slip motion” of single dislocations and compute the corresponding avalanche statistics. The distributions turn

out to be scale-free, and the exponent of the power law distribution exhibits independence on the driving stress.
The introduced methodology is entirely generic and has the potential to turn meso-scale TEM microscopy into
a truly quantitative and reproducible approach.

1. Introduction

Metals and alloys are by far the most important structural materials
due to their high yield strength combined with great ductility allowing
materials to undergo significant deformations without failure. One of
the “key ingredients” for improving mechanical properties are, quite
unintuitively, defects in the crystalline structure, such as line-like dis-
locations. In particular in alloys, they exhibit complex behavior that is
up to date not fully understood.

The development of alloys with optimal strength-ductility proper-
ties was strongly accelerated by the discovery of high entropy alloys
(HEAs): multi-principal-element alloys containing at least five compo-
nents [1,2]. Their high configurational entropy leads to a random or
near-random order of the alloying atoms [3]. Apart from, e.g., en-
hanced corrosion resistance and thermal stability [4] this also results
in exceptional mechanical properties [5-8]. Exploring the interaction
of dislocations with such aspects of randomness and connecting this to

emergent properties is challenging because it is exactly the randomness
that requires large datasets for separating “the noise from the signal”
during statistical analyses. This is a particular challenge in the context
of experiments and even more so in the context of in situ microscopy.

The alloying atoms in HEAs occupy random lattice sites on a typ-
ically face- or body-centered cubic (FCC or BCC) crystal lattice such
as the FCC CoCrFeMnNi alloy, the so-called “Cantor-alloy” [9]. Since
the alloying elements have different atomic radii, the crystal lattice
is strongly distorted, resulting in appreciable random fluctuations of
the local elastic distortions and stresses [10,11]. Such distorted sites
interact with dislocations and may act as pinning centers that hinder
the motion of gliding dislocations and, thereby, increase the yield
strength of HEAs significantly. However, accurate and quantitative
estimation of how this affects hardening is still difficult.

Investigating hardening and the yield stress of HEAs was success-
fully done by assuming a sinusoidal dislocation shape that minimizes
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the sum of the pinning and elastic energies [12,13]. However, this
model is not able to predict or explain another conspicuous phe-
nomenon: Usually, the motion of dislocations is not smooth, and they
move in a jerky manner, resembling stick-slip processes. This is the
result of the random pinning centers [9,14]. This situation was argued
to be akin to a depinning transition, a statistical physics concept of an
elastic manifold being driven through a random pinning potential [15,
16]. The corresponding simulations predict rather complex avalanche-
like dynamics with scale-free fluctuations in both space and time and
even have been successfully used to describe earthquakes, domain
wall motion in ferromagnets, vortices dynamics in type-II superconduc-
tors [17]. Such a model can be expected to also apply to dislocations
in HEAs, because dislocations can be considered as elastic lines: the
line tension tends to straighten curved dislocations to minimize elastic
energy.

The avalanche-like motion of dislocations has been reported for
pure metals mostly based on the compression of single crystalline
micro- and nanopillars [18,19], nanoindentation [20-22] and acous-
tic emission measurements [23,24]. Apart from size effects [25,26],
the most striking difference of micro- and nanoscale phenomena as
compared to bulk deformation is that instead of a smooth mechanical
material response, a wealth of abrupt plastic events occur. These show
as strain bursts or stress drops in the stress—strain curves [27,28] and
are caused by local avalanche-like redistribution of dislocations. There,
the size of the avalanches is taken as the global plastic strain incre-
ments, which was found both by experiments and simulations to follow
a scale-free distribution (power law) [29-32]. The scale-free avalanche
statistics are important because ultimately, they show that small-scale
dislocation plasticity is a complex system far from equilibrium, which,
under certain circumstances, can even be classified to be in the same
universality class as earthquakes.

In situ transmission electron microscopy (TEM) is an effective tool to
observe dislocation activities in small volumes and has been extensively
utilized to study small-scale plasticity [33,34]. However, so far, a direct
and quantitative TEM analysis of dislocation avalanches was not possi-
ble: a single dislocation in conventional FCC metals moves very fast and
is very difficult to track. Moreover, dislocation avalanches are always
accompanied by complex dislocation microstructure evolution which
in turn makes understanding the origin of critical behavior difficult.
Dislocations in HEAs [7,9,13,35] provide a great opportunity to directly
study avalanches for single dislocation since the high lattice friction
slows down the dynamics considerably, and recent TEM experiments
were indeed able to show the stick-slip motion of dislocations during
glide [9,36,37]. However, a dislocation shape and avalanche analysis
would require complete and accurate spatio-temporal information of
the dislocation lines.

Up to date, a quantitative analysis of the dislocation structure and
avalanche behavior from direct experimental observation of disloca-
tions was not possible. In this work, we investigate the dynamics
of individual dislocations in a HEA material. Our high-throughput,
deep learning-based image analysis of in situ TEM data allows us to
exactly reconstruct the spatio-temporal evolution of the dislocation mi-
crostructure and to report on direct experimental measurements of the
stick—slip motion. It shows that critical behavior in the context of the
depinning framework can already be manifest at the level of individual
dislocations. Moreover, complementary discrete dislocation modeling
is presented that, in addition to explaining the experimental findings,
unveils the effect of fluctuations on the dislocation line roughness and
the universal nature of the avalanche-like dynamics.

2. Methods
2.1. The in situ TEM experiment

In situ straining experiments were carried out on a Gatan low-
temperature straining holder, using a JEOL 2010HC TEM equipped
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with a Mega view III CCD camera from the EMSIS company. This
allows us to capture 23 images/s (46 frames/sec) that are converted
in a 50 Hz video flux, which means that some images (about 2-3 per
second) are combined frames that need to be ignored. This possible
limitation only applies to fast dislocation movements such as those
immediately preceding annihilation (fractions of a second). However,
those are anyway not observable with this camera. Note that due to
different loading stresses, there were roughly 4300 frames for the first
experiment while only around 200 frames for annihilation experiment
3 and 4. The tensile sample preparation is described in [36]. Although
compression is not possible with such a holder, the reversible loading
of local parts of the specimen is possible because of the overall elastic
loading of the ensemble of holder, frame, and sample. We meticulously
focused on such a specific region of the specimen to obtain our in
situ cyclic loading experiments, where we observed the phenomenon
of dislocation annihilation. As shown in movie 1 (cf. Appendix A.2),
the initial phase of the experiment revealed a slip trace area with
distinct dislocation patterns: three dislocations were present in the left
region, and one dislocation was observed in the right region. During the
experiment, the three dislocations in the left region moved toward the
right, while the single dislocation in the right region as shown in this
particular frame of the video, moved toward the left. This movement
led to the annihilation of these dislocations. The process of dislocation
annihilation continued throughout the experiment.

All observations were obtained under a 200kV electron beam while
the sample was maintained at about 110K. Such a low temperature,
coupled with the bright LaB6 gun of the TEM and FCC structure of
the alloy allowed the observation of thick regions of the specimen (up
to 700 nm). The sample thickness in regions of interest was assessed
through geometrical projection of the slip traces produced by disloca-
tions on both surfaces of the foil. We used an elastic shear modulus
of y=84.65GPa and a Burgers vector magnitude » = 0.25246nm to
infer the local stress acting on the curved dislocations. The complete
crystallographic orientation of the region of annihilation, including the
Burgers vector determination was done using two beam diffraction
patterns acquired during the experiment and following the invisibility
criterion (Z - 5 = 0 where 7 is the diffraction vector and b the
Burgers vector) in two beam conditions. The Burgers vector direction
was further confirmed by identifying cross-slip behavior between two
indexed (111) slip planes.

2.2. Deep learning-based identification of dislocations

Typical deep learning approaches for binary segmentation of images
consist of training a convolutional neural network which, if the training
process was successful, results in a pixel-based image with the “mask”:
black and white pixel where one type indicates the background and the
other one the foreground, i.e., the dislocation. The methods are limited
by the fact, that for the current analysis, dislocations are required as
mathematical polynomials or splines. To avoid having to fit a spline
to the pixelated masks we developed an approach for spline support
points prediction using a Mask R-CNN. This directly predicts 20 support
points on each dislocation, each of which consists of a pair of coordi-
nates. These points can be used to obtain the spline without further
postprocessing. To avoid having to manually annotate thousands of
images as training data, we use our in-house developed synthetic data
generation model described in detail in the previous work [38,39].
More details on the synthetic data and machine learning method are
provided in Appendix B. As a result, the trained model is able to predict
the mathematical dislocation lines from TEM images with very high
precision (as is particularly important for the analysis of avalanches)
and even in cases where nearby dislocations nearly overlap. To further
increase the accuracy of predicting the position of dislocation lines
to sub-pixel precision, the TEM images were processed prior to the
training. For this purpose, classical image analysis methods such as
image registration and keypoint stabilization were used, cf. Appendix C.
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2.3. 3D DDD (static) simulations

To compute the stresses of dislocations inside a finite volume, the
3D Discrete Dislocation Dynamics (DDD) simulator MoDEIlib (Mechan-
ics Of Defect Evolution Library) was used. MoDelib is an open-source
code [40] which is based on discretizing curved dislocation lines into a
series of connected segments. The simulation tool incorporates bound-
ary conditions and image forces by merging solutions for an infinite
domain with a Finite Element Method (FEM)-based boundary cor-
rections. Further details about MoDElib are available in [41] and
the references therein. The present work reconstructs dislocation con-
figurations from Transmission Electron Microscopy images to a slip
plane within a foil, of approximately 675nm thickness, as illustrated
in Fig. 4(b). The shear stresses acting on dislocations in general may
arise from various sources: external stress, interactions among disloca-
tions, dislocation self stresses, and image stresses due to free surfaces.
All mentioned stress components together except for the external stress
are here termed “internal stress”. These stresses are calculated using
the DDD model with Dirichlet boundary conditions on the foil’s left and
right surfaces, and traction-free conditions on all other boundaries. Our
focus is on the shear stress associated with a stick—slip event. Therefore,
to remedy the challenge of pinpointing the exact location of which part
of the dislocation starts moving first, we estimated the average shear
stress along the slip direction across the entire curved dislocation. This
estimation is done by extracting stress data from the integration points
along the dislocation segments.

2.4. 2D DDD (dynamic) simulations

To investigate the depinning of dislocations in a heterogeneous
stress field, a 2D grid model was employed, based on [14]. The model
mimics the motion of a single dislocation line in a glide plane due to
an externally applied stress. It captures the elastic interactions between
different parts of a moving dislocation line as well as the effects of
the random local lattice distortions in a periodic domain. Values of
the sites (i.e., the “grid points”) are either 0 or 1, corresponding to
plastic slip: the sites through which a dislocation line already passed
take the value 1, and the others are 0. The contour between them
represents the dislocation segments, which are either of edge or screw
character. The resolved shear stress ¢ acting on a segment is the sum
of the external stress o, the stress from the self-interaction of the
dislocation o (which includes the line tension), and the pinning
field o, (which represents the fluctuating lattice distortion of the
HEA). The latter is an uncorrelated shear stress value assigned to
every cell randomly drawn from a centered Gaussian distribution. The
propagation of the dislocation line is modeled using random dynamics:
at every time step a segment is chosen randomly, and the local resolved
shear stress is calculated for that segment. Then the segment is moved
in the direction of the glide component of the Peach-Koehler force. To
study the stick-slip dynamics a loading protocol was employed where
the external stress is increased gradually. During a slip event with a
positive plastic strain increment, the stress drops. As a result, after a
transient, the system reaches a steady state with a zig-zag like stress-
time curve characteristic of stick-slip dynamics. The statistical analysis
of dynamics and the shape of the dislocation lines were executed on
the steady state regime of the simulations. A more detailed version of
the model and the data analysis of the simulations can be found in
Appendix D.2.

3. Results
3.1. Observations from the in situ TEM experiment
The in-situ TEM experiment was carried out on an equimolar CoCr-

FeMnNi FCC HEA (Cantor alloy) thin foil sample through a JEOL 2010
LaBg operating at 200k V. The sample region of interest had a thickness
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Fig. 1. Annihilation process #1: (a) Three typical TEM images including dislocations,
recorded at equidistant time steps. The two roughly horizontal lines are slip traces. (b)
Dislocation represented as splines obtained from a deep learning model. (¢) Knowing
the details of the crystallography allows us to reconstruct the dislocation shape in 3D
space. The plot shows snapshots of the evolution of dislocation 1 at equidistant time
steps during the whole experiment from the first appearance to the annihilation of the
dislocation; the bottom projection shows this in the original image plane as in (a) and
(b). The electron beam is directed downwards.

of around 600nm, which is close to the maximum possible thick-
ness in our setup. Further details are given in “methods” below and
Appendix A. The experiments were designed such that only very few
dislocations are present, where two of them have opposite Burgers
vector directions. These dislocations are attracted and move toward
each other until they annihilate. Altogether four experiments with
such annihilation processes were performed which will be analyzed
individually (cf. movies described in Appendix A.2).

Fig. 1(a) shows examples of TEM images obtained from one of
the movies. There, dislocations appear as curved, line-like objects that
terminate at the straight, nearly horizontal dark lines, the slip traces at
the surface of the foil. These slip traces are not exactly parallel which
results from the fact that the surfaces of the sample are not perfectly
co-planar.

3.2. Image analysis

For extracting the position of the dislocations one could in principle
use a software for manually annotating the images as, e.g., done
in [37]. However, the accuracy may depend on the person who is
performing this task and may vary from line to line. Additionally, this
process is extremely time-consuming and cannot be manually done for
thousands of frames. Classical image analysis approaches, on the other
hand, typically fail due to the complexity of such images. Deep Learning
models trained on synthetic data turned out to be efficient and accurate
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alternatives. The model resulting from the “general training” can be
kept and only needs to be fine tuned with 10..50 images for the new
situation. Allowing this easy transferability was one of the pragmatic
goals of our strategy (more details are given in the section “Methods”
and the Appendix B): dislocations represented as mathematical poly-
nomials can then be used to calculate geometrical properties such as
the dislocation curvature or orientation. Subsequently, the information
about the orientation of the sample and crystallographic directions
were used to reconstruct the 3D dislocation lines from their 2D pro-
jections. Fig. 1(c) shows this for dislocation 1 and several different
frames of the first annihilation experiment. It is observed that the
propagation of the dislocations is not homogeneous, and the uneven
spacing between the lines is a signature of small strain bursts. (cf.
supplementary movies described in Appendix A.2).

3.3. Detection of strain bursts

To quantify the characteristics of the dislocation motion, the right-
most dislocation number 1 was automatically tracked for all 4 annihila-
tion experiments. Fig. 2(b) shows this dislocation for each frame during
the first experiment. Clearly, the propagation of the dislocation line
is jerky, forming “islands” of various sizes between subsequent frames
that correspond to the individual dislocation avalanche events. Fig. 2(a)
sketches such an island between two subsequent time steps #; and 7,
with Ar =1, —t;. The area AA; swept by the dislocation within the slip
plane was numerically calculated and is associated with a dislocation
avalanche; it is proportional to the plastic strain increment caused by
the event. The proportionality factor depends on the Burgers vector
and sample geometry. Since the latter is not known with sufficient
accuracy, we identify the size of the events .S with the slipped area 4A4;
because as long as scale-free features are concerned, a multiplicative
factor is irrelevant. Fig. 2(c) shows the swept area increment and the
accumulated area as a function of the movies’ frame number. The high
fluctuations are due to the jerkiness of the dislocation motion.

3.4. Dislocation avalanche statistics

The statistical distribution of the sizes S of individual avalanches
of the rightmost dislocation were analyzed. This was done for the
four consecutive annihilation experiments; the distributions of the
avalanches were found to follow the scale-free distribution P(S) «
S77C(S/S,), where 7 is the avalanche exponent, .S, is a cut-off and
C is a cut-off function that decays faster than algebraically for large ar-
guments [28]. Fig. 3 shows the distribution of avalanche sizes (i.e., the
swept area). Consistent with depinning, the avalanche statistics follow a
power law distribution that holds for roughly four orders of magnitude
of the avalanche size S without any apparent cut-off. The exponents
for the different annihilation processes take values in the range r =
1.05 + 0.05.

As shown in Fig. 2(b), during a plastic event typically only a section
of the dislocation line moves. To explore further scale-invariant features
of the dislocation motion, the shape of these slipped island-like areas
of individual events was analyzed. In particular, the dependency of the
size of the slipped area S w.r.t. the avalanche width w was analyzed.
According to depinning theory, the slipped areas are expected to be
self-affine, i.e., S « w!'*v, where ¢,, is the avalanche roughness
exponent. Fig. 3(b) demonstrates that this relationship holds indeed
with ¢, = 0.34 + 0.05.

3.5. Influence of the loading

In small-scale crystal plasticity, an often observed aspect of the
respective universality class is a dependency of the avalanche statistics
on the loading, i.e., type and magnitude. The underlying reasons are
attributed to mechanisms such as localization versus self-organization
(e.g., [42]) or stress inhomogeneities (e.g., [43]). To understand if
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Fig. 2. (a) Visualization of the dislocation’s swept area per time step (light blue shaded
area) from which the average velocity can be obtained. (b) The shape of dislocation 1
during annihilation process #1 as extracted by the ML algorithm. The colors indicate
the frame nr, that is, the elapsed time. (c) total swept area of dislocation 1 (red)
and increment of swept area for each frame (blue). The noisy character of the curve
comprising of peaks of random size is an indicator of jerky motion. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 3. Scale-free properties of experimentally observed dislocation avalanches.
The avalanche exponent r of the power law distributions in (a) is z = 1.05 + 0.05.
Avalanche sizes smaller than the area of a quarter of a pixel are not considered. Panel
(b) shows the size .S vs. width w of each avalanche, and the fitting gives the roughness
exponent with a value of ¢,, = 0.34 + 0.05.

in the case of single dislocation avalanches the dependency on the
loading should be understood as a type of self-organized criticality,
as suggested by the occurrence of power laws, we investigate the
correlation between the driving stress and the avalanche size [44].
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dislocation configuration used as the initial values for a 3D DDD model for calculating the internal stress, i.e., the shear stress due to dislocation interactions and boundary
conditions. The “violin plot” in (c) visualizes the distribution of excess stress obtained from (a), the dotted lines indicate the median of each distribution. The violin plot in (d)
shows the distribution of internal stress (the light-colored, lower distributions) as obtained from (b) and the depinning stress (the dark plots in the upper row). The differences
between the two overlapping rows of plots are the excess stresses. (e) Relation between the shear stress acting on a dislocation and the avalanche size obtained as the slipped

area.

The shear stress acting on a short segment of a dislocation consists
of a component from the applied external loading, o.y, a friction-like
contribution due to the large local random lattice distortions of the
HEA, og., and an internal stress, o;,,, due to interaction with other
dislocations, the free surfaces, and possibly with other parts of the same
dislocation. The applied external stress is not directly accessible from
the in situ TEM straining experiment.

A commonly used strategy to estimate this stress is based on the
assumption that in an equilibrium situation, the external stress is
balanced by the line tension [45] such that oo, ~ ub/R where R is
the radius of curvature of the dislocation and u is the shear modulus.
However, this expression is only valid, when a dislocation (i) bows
out between two strong pinning points and (ii) the friction stress is
negligible, o, < 0y This is typically the case in FCC materials due
to the planar nature of the dislocation core.

In HEAs, however, due to large lattice distortion and interactions
among multiple principal atomic species, the faces of the dislocation
core are atomically rugged — as is the energy landscape — possibly
resulting in an additional friction [46]. For a strong friction force, it
is, thus, ooy ® ogic + #b/R, i.e., the line tension o), = ub/R is an excess
stress required to move the dislocation line due to pinning effects at
the sample surface. o), was obtained from fitting a circle to the line in
the local slip plane coordinates, as obtained from the digitized and 3D
reconstructed dislocation microstructure (see [37] and the Appendix).
There, the surface-near regions of the line were ignored to avoid the
influence of image forces. Fig. 4(a) shows a sketch of how the excess
stress was obtained.

The resulting distributions of the excess stress are visualized in
Fig. 4(c) (the width of the violin plots at a specific stress value indicates
the frequency of that stress value similar to a histogram). The obtained
values are significantly smaller than the critical resolved shear stress
of this material, i.e., around 160 MPa at the given temperature (see
Appendix D.4 for details). The average excess stress initially increases
and then saturates during the sequence of the four experiments, likely
due to history effects on the sample surface (note that the external stress
is constant throughout each of the four experiments, but is different for
each experiment).

For obtaining the contribution of ¢, the 3D reconstructed dislo-
cation microstructure of all 5130 frames was used as input for a 3D
DDD simulation. However, the DDD model was only used to calculate
the internal stress; no dynamical simulations were performed (see the
section“Method” below). Fig. 4(b) shows the model of the sample with
two dislocations.

The corresponding depinning stresses include both the excess and
the internal stress. Additionally, only those data points were considered
that have a corresponding non-zero velocity, resulting in Fig. 4d for the
four annihilation processes.

Fig. 4(e) shows that the depinning stress and the avalanche size are
not strongly correlated. One can observe that the pinning forces acting
on moving dislocations show significant fluctuations. This agrees well
with a recent study of dislocation pinning in HEA [37]. Quantifying
the strength of the relation between stress and velocity using Pearson’s
correlation coefficient for the stress and the avalanche size gives the
values 0.07, —0.16, —0.02, and —0.12 for the four experiments, indicating
that there is no correlation between the two variables.

The relation between the avalanche size and the depinning stress
additionally emphasizes the difference between moving dislocations
and other systems (such as fluid flow in porous media, or the dynam-
ics of vortices in superconductors): in such a non-equilibrium system
if the critical point is approached, then the intermittent behavior
becomes associated with static random “obstacles” which exert space-
dependent pinning forces on the moving objects [27]. Single disloca-
tion avalanches exhibit the characteristics of self-organized criticality
instead of stress-tuned criticality.

3.6. Interpretation in terms of 2D DDD simulations

The experimentally obtained power law avalanche statistics and the
self-affine avalanche roughness exhibit robust scaling exponent charac-
teristics of the stick-slip dislocation motion. However, the roughness
exponent {,, is rather different from those predicted by dislocation-
based models of depinning where ¢, is in the range of 1.0 ~ 1.25 (see
Appendix D.6 for more details).

To investigate and explain the experimental findings, a 2D DDD
model was employed which is based on [14] (see “Methods” and
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2D DDD modeling of single dislocation avalanche. (a): Dislocation during the steady state stick—slip motion along y-direction. The line is initially of edge character

and parallel to the x-axis. The inset shows a magnified view of an event of size s and width w surrounded by the dislocation in its two consecutive metastable positions. (b):
Stress-slipped surface curve corresponding to the dislocation in (a). Plastic events correspond to the simultaneous drop of stress o, and the increase of slipped surface A. These
events are connected by quiescent periods characterized by increasing stress and constant A. The latter periods are marked by the colors of the corresponding stationary dislocation
line in panel (a). (c): Distribution of the avalanche sizes s for dislocations of both edge and screw characters and the fitted scale-free distribution with = = 1. (d): Scatter plot
of the slipped surface s versus the width w of the slipped region (see inset of panel (a)) for all plastic events. The data are consistent with s o« w'*% with ¢,, = 0.35 +0.03. (e):
Scatter plot between the applied stress o, at the onset of an event and the size s of that event. The two quantities have a very low Pearson correlation of C ~ 0.15.

Appendix D for further details). The results of the simulations are sum-
marized in Fig. 5. Panel (a) shows the propagation of the dislocation
line through a sequence of metastable states. The slipped surface-stress
curve in Fig. 5(b) exhibits a zig-zag pattern characteristic for stick—
slip dynamics. Separate slip events were identified by thresholding the
slipped surface rate. The distribution of slip sizes (slipped areas) obeys
a power law with the same exponent = = 1+0.05 as in the experiments
and with an exponential cutoff (panel (c)). In Appendix D.5 it is shown
that the exponent 7 is robust w.r.t. change of the dislocation character
and to the typical obstacle strength in the material. The slipped surface
S of slip events scales with the width w of slip events according to
S « w!'*av where {,, = 0.35 + 0.03 (panel (d)), in agreement with
our experimental result in Fig. 3(b). To understand why ¢,, is different
from the roughness exponents of the whole dislocation line ¢ reported
in the literature, we repeated the standard analysis by calculating the
mean power spectrum of the dislocation lines and obtain ¢ = 0.85+0.05
(see Fig. D.11), which is very close to the values obtained above and
in accordance with the scaling relation (Eq. (D.5)).

These findings imply that during an event, the height 4 of the
slipped area increases (on average) much slower than the width w.
Indeed, Fig. D.10 confirms this for both edge and screw dislocations by
plotting the evolution of these quantities during an event. This means
that a dislocation avalanche can be roughly envisaged as a forward
propagation of a short dislocation segment followed by the lateral
extension of the slipped area. The reason for this behavior is likely
the anisotropic nature of dislocation self-interactions, as detailed in
“Methods” and Appendix D.

Finally, Fig. 5(e) demonstrates that the simulated dislocation
avalanches possess the same critical nature as in the experiments
(Fig. 4(e)): The slipped surfaces (and therefore the plastic strain incre-
ment) during individual events are practically uncorrelated with the
external stress.

4. Conclusion and outlook

We performed in situ TEM experiments of Cantor HEAs at low tem-
perature and observed the non-smooth, stick-slip motion of individual
dislocations. Through a high-throughput, deep learning-based extrac-
tion of dislocations as mathematical splines, we managed to reconstruct

the shape and position of the dislocations in 3D with very high ac-
curacy. Analyzing the stick-slip motion of dislocations by considering
thousands of TEM images allowed us to obtain robust “single disloca-
tion” avalanche statistics which exhibit strong evidence of power-law
statistics. The exponent of the distribution shows independence on
the external driving stress which is a clear feature that distinguishes
dislocation plasticity from other disordered, non-equilibrium systems.
Our phenomenological 2D DDD simulations confirmed the power law
statistics of single dislocation avalanches and additionally reveals that
long range interactions as the main source of interactions in this model
are essential.

The microscopy work itself is already a novelty due to the detailed
observation of the dislocation motion. However, the most intriguing
aspect of this work is the combination of dedicated experiments with a
novel data mining strategy for analyzing large amounts of in situ TEM
data. Until recently, it has not been possible to analyze in situ TEM
data in such a quantitative manner, let alone to observe and analyze
avalanche behavior or to interpret it in terms of simulations.

We see this work as a critical step toward a transformed materi-
als science community, where data science and artificial intelligence
approaches in combination with tailored experiments and microscopy
help to truly bridge the gap to simulations and to allow the extraction
of knowledge that otherwise would remain hidden.
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Appendix A. Additional information for experiments

A.1. Parameters

Table A.1 shows all parameters that are required for the three-
dimensional reconstruction of the dislocation lines from the
two-dimensional images.

The foil thickness ¢ at the location of the annihilation is calculated
from the slip traces of the dislocations gliding in the (111) plane. The
projected distance between the slip lines #,,; varies between 600 and
700 nm. The corresponding (111) plane is inclined by an angle of 50°
from the horizontal/camera plane for the given Euler angles. The local
calculated thickness ¢ is therefore

Table A.1
Parameters of interest from the TEM experiment.
Symbol Definition Value
(¢1.0.9,) Bunge Euler angles (59.1°,80.2°,92.3°)
n Slip plane normal [1,1,1]
b Burgers vector (1,-1,0)
0 Tilt 5°
T Temperature 108.13 K

Acta Materialia 282 (2025) 120455

t =ty tan50°,

proj

which results in a value range of 715-830 nm. Observations in such
thick regions of the foils are facilitated by the low temperature experi-
ment.

A.2. Supplementary movies of the in situ TEM experiment

There is one movie for each of the four annihilation experiments
(supplementary movie #1 - #4):

Movie #1: There are roughly 4200 frames. Each frame consists of
4 dislocations: three dislocations from the left move toward the
right and one dislocation from the right moves toward the left.
Movie #2: There are roughly 700 frames. Each frame consists of 3
dislocations: two dislocations from the left move toward the right
and one dislocation from the right moves toward the left.

Movie #3: There are roughly 200 frames. Each frame consists of 2
dislocations: one dislocation from the left move toward the right
and one dislocation from the right moves toward the left.

Movie #4: There are roughly 120 frames. Each frame consists of 2
dislocations: one dislocation from the left move toward the right
and one dislocation from the right moves toward the left.

Appendix B. Deep learning-based image analysis

Dislocation information exists in sequences of bright/dark field
images where one can extract dislocation information (coordinates)
through segmentation. This segmentation task is usually done by man-
ually labeling the dislocation lines. Unfortunately, this requires expert
knowledge and is too tedious to be feasible for actual experimental data
consisting of several thousand frames.

Ever since the seminal work of Krizhevsky et al. [47] deep learning
(DL) has had a tremendous impact on image processing in materials
science or microscopy. Various improved deep neural networks have
been developed, such as ResNet for classification and U-Net for seg-
mentation. However, the predictive ability/accuracy of these neural
networks is greatly limited by appropriate training data when solving
real-world problems. Especially for transmission electron microscopy
(TEM) images of dislocations, the difficulty originates from the collec-
tion of a large number of high-quality TEM images (for training) and
accurately labeled dislocations in the images containing other objects
such as grain boundaries, slip traces, and even image noises. Synthetic
data can easily solve the limitation of data collection. However, high-
quality data also requires the proper/correct physical features encoded
in the generated synthetic data. Recently, Govind et al. [38] proposed a
parameter-based synthetic data generation model to generate synthetic
training data (images and ground truths) for a number of machine
learning approaches i.e., dislocation segmentation, instance segmenta-
tion, dislocation spline support point estimation. A machine learning
(ML) model trained on such synthetic data is able to exclusively extract
dislocation segments from TEM images.

In this work, we use a keypoint detection approach based on the
Mask R-CNN [48] architecture to obtain support points on the dis-
locations directly, which can be used to represent a dislocation as a
spline (i.e., a piecewise polynomial). We found that 20 points on a
dislocation are sufficient to accurately obtain a spline representation
of a dislocation. We use the Mask R-CNN model developed in the
Pytorch framework with a ResNet50 as backbone and inherit pre-
trained weights, which are obtained by training the backbone for image
classification problems on the ImageNet [49] dataset.
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(a) TEM image

(b) keypoints segmentation
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(c) dislocation splines

Fig. B.1. Identification of Dislocations. The left panel shows a frame from the experiment showing the dislocations part of the annihilation process. Middle panel: 20 keypoints
on each dislocation are identified by the deep learning model, acting as support points for splines (i.e., piecewise polynomials), as shown in the right panel. Based on these splines,

it becomes straightforward to compute, e.g., the local curvature of dislocations.

B.1. Keypoint detection

The keypoint detection method represents a distinct approach in
dislocation image analysis compared to binary and instance segmen-
tation by directly identifying ‘“key points” on the dislocation line. This
method is similar to pose detection, where algorithms detect and mark
various body parts (such as the head, hands, elbows, legs, and toes). In
the context of TEM dislocation images, keypoint detection algorithms
are trained to pinpoint points on the dislocations, which can be used
as support points to represent the dislocations as shown in Fig. B.1.
The primary advantage of keypoint detection lies in its direct approach.
It eliminates the need for the intensive post-processing required in
segmentation methods. It simplifies the process of generating spline
representations by directly providing support points for dislocations.
This can lead to a more efficient analysis process, especially in cases
where rapid processing is essential. However, keypoint detection is
challenging. The accuracy of this method hinges on the precise identi-
fication of keypoints, which requires a robust and well-trained model.
The complexity increases with the density and intricacy of dislocation
networks in the images. Ensuring that the detected keypoints accurately
represent the dislocation structure is crucial, as misidentification can
lead to incorrect analysis of the dislocation characteristics.

B.2. Synthetic datasets training

Generating a synthetic dataset with a parametric model requires
incorporating several parameters that represent aspects of the image
background and geometrical properties of the dislocation lines. Exam-
ples for the former are the degree of noise in the background or the
occurrence of larger image artifacts, examples for the latter are the
number, shape, and orientation of the dislocations. Furthermore, for
the numerical approximation of the dislocations in form of splines,
the support points on the dislocation lines are required. These points
are essential in modeling dislocations as splines within synthetic mi-
crostructures. Based on our previous work in [50] we established a
comprehensive database of typical line shapes derived from 70 distinct
real dislocations and recorded the most suitable, corresponding support
points for approximating these dislocations. Furthermore, the synthesis
of this dataset involves the integration of several additional parameters
(i.e. number of dislocations, number of pileups, slip width, dislocation
spacing and slip direction of pileup). Statistical analysis of a range of
TEM images from different experiments (including experiments from a
large literature base) was performed to establish a general value range
for all parameters, which enables the generation of diverse synthetic
images. The current work only requires specialized situations which,
however, are also covered by described, more general approach. The
images exhibit variations in microstructure, contrast, and pixel inten-
sity. It is worth noticing that some structures such as slip trace lines can
easily be incorrectly predicted as dislocations. In this work, we have
also explicitly included slip trace lines in the synthetic data to help the

model learn and distinguish them from dislocations. In particularly, this
is useful for the here investigated TEM image dataset which contains
distinct slip trace showing as darker lines.

B.3. Training and validation

We train the Mask R-CNN model on 5000 synthetic image data
to predict 20 support points on each dislocation. Examples of some
synthetic images are given in Fig. B.2. Generally, the dataset consists
of images with relatively simple microstructures (e.g., Fig. B.2a and b),
which have dislocation pileups with non-overlapping or intersecting
lines, as well as more complex microstructures (e.g., Fig. B.2c and
d) where dislocation pileups overlap. Furthermore, we also have dis-
location microstructures with slip trace lines. It is important to note
that the synthetic dislocation microstructures are not based on any
physical models and hence might not represent any realistic microstruc-
ture, but nonetheless, such microstructures provide a diverse range of
microstructures to train the models improving the robustness of the
models.

The comparison of synthetic images (as those shown in Fig. B.2)
with real experimental images (as shown in Fig. B.1) reveals a clear
difference between the two types. Real and synthetic images often differ
significantly in terms of texture, noise patterns, lighting conditions,
and other subtle characteristics. These differences can lead to a dis-
parity in the model’s performance, as it may not have learned to cope
with the intricacies present in real experimental images. Furthermore,
synthetic data often lacks the noise and imperfections that exist in
real experimental data, which can be a challenge with the prediction
capabilities. During the training of the model on synthetic images, we
apply several image transformation methods such as Gaussian noise,
Clahe, brightness contrast, etc. However, the synthetic data still has
a lower feature variance and might not be able to provide high-
quality results when used for prediction on real images. The key is
to complement synthetic data with real experimental data to ensure
the model is robust, versatile, and capable of generalizing well to
real-world scenarios (see below).

The predictions on some of the synthetic images are shown in
Fig. B.2. There, we observe that the trained model was able to ac-
curately predict the support points on the dislocations, especially on
the simple dislocation microstructures such as Fig. B.2a and Fig. B.2b
where dislocations do not overlap or intersect each other. On careful
observation we find that even though in the synthetic datasets we
have equally spaced spline support points, in the predictions this is
not always the case as seen for dislocation marked D1 in Fig. B.2b.
The spline might be incomplete in case the model fails to predict
the dislocation endpoint. The model was successful in distinguishing
between slip trace lines and dislocations. Even for dislocations with
sub-pixel spacing (i.e., lines that overlap) it was still able to assign the
support points to the dislocations accurately. This is one of the unique
features of this approach where the model is capable of predicting
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(a) example 1
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(b) example 2

Fig. B.2. Synthetic images and predictions. Each of the four examples shows the synthetic image on the left together with the predictions of the Mask R-CNN model on the
right. The model was only trained with synthetic data. The predictions consist of pairs of bounding box and keypoints. The examples in (c¢) and (d) are very complex due to

intersecting lines. The DL model still performs very well.

such dislocations. This makes it much more suitable in particular for
dislocation segmentation as compared to all commonly used CNN-
based approaches. The predictive power of the model is somewhat
reduced, however, when dislocations in an image strongly overlap
and intersect each other (e.g., shown in Fig. B.2c and d). In such
cases, we find that either the model fails to predict dislocations on the
complete dislocations or predicts some of the points on the neighboring
dislocations.

B.4. Fine-tuning with real image data

As shown in the second column of Fig. B.3 the model trained only
on synthetic data is able to make predictions but the results are not
of highest accuracy. There are two main issues: The first issue is that
the model was trained to predict all dislocations present in an image
— and hence the model also predicts those dislocations that are not
part of the slip plane of interest as can be seen in Fig. B.3b and k.
The second issue is much more critical as the model fails to predict
dislocations of interest (Fig. B.3b and k). Both issues are very common
when a machine learning model is trained on a dataset of a “synthetic
domain” and evaluated on a dataset of a “real domain” - despite the
use of data augmentation methods as a remedy to improve the domain
generalization of the model trained on the synthetic dataset.

To increase the accuracy of the predictions for the whole dataset, we
have further fine-tuned the model with a subsequent training with 10
images from each of the four experiments. For the training, we have
hand-labeled these images where we marked only those dislocations
that are part of the slip region of interest. Fine-tuning is done by a
sequence of two training steps: it starts with training the whole model
with synthetic images, followed by training of only the “head” of the
network with only a few real, hand-labeled images. During this step
only the weights of the last part of the network are trained, all other
weights are “frozen”. Note, that already the first steps also starts with
a pre-trained model, using generic weights from the ImageNet.

The results for this approach are shown in the third column of
Fig. B.3. It is remarkable to see that even though we used only 40
images to fine-tune the model, we obtained significantly better results.
Additionally, it turned out that training on synthetic images has the

benefit that the labels do not exhibit the human bias introduced during
hand-labeling. We observed in a study (not shown here) that the use
of synthetic images significantly helps to learn even small fluctuations
in the line geometry — as is very important for, e.g., computing the
curvature as required for this work.

Appendix C. Image analysis: Video stabilization and spline pre-
processing

C.1. Video stabilization and dislocation spline preprocessing

Due to the impact of the environment (noise, vibrations) on the
recording of the experiment a range of oscillation or of (more or
less) random shifts of the image may take place. Therefore, to guar-
antee a high precision of the three-dimensional reconstruction and
determination of the dislocation position, it is necessary to perform
video stabilization before further analysis. We automate this process
by writing a Python code with the library package openCV [51]. The
video recorded from the four experiments are converted into frames
(i.e., individual images). The experiments 1-4 contain four consecutive
annihilation processes, which consist of roughly 4200, 700, 200 and
120 frames, respectively. All images undergo a contrast enhancement
process to reveal most of the important features of the image. For each
of the four annihilation process, we chose a fixed frame, to which we
transform other frames. We first find keypoints and descriptors from
this chosen frame using SIFT (scale-invariant feature transform) from
openCV (see Fig. C.4a). Note, that here “keypoints” refers to reference
feature present in all images and not the points on the dislocation,
extracted by the DL model. SIFT [52] transforms the image into a set
of feature vectors, which consist of keypoints and descriptors, and they
are invariant to image transformations (such as translation, scaling,
or rotation). The Lucas—Kanade method [53] (also implemented in
openCV) is then applied to track the motion of these keypoints for
every frame with this fixed original frame. This method uses the least
squares criterion to solve the optical flow equation, assuming that the
flow is constant in the vicinity of the considered point. At the end, it
returns the estimated position of these keypoints in every frame. With
the two sets of points, one from the original frame and one from the
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microscopy image trained with synthetic data as before, additionally fine tuned

example 1

example 2

(d)

example 3

(9)

example 4

(k)

Fig. B.3. Training with synthetic data and additional fine-tuning. The left column shows an image from each of the four experimental videos. The middle column shows the

corresponding predictions from a model trained only on synthetic data, while the right column shows the predictions with a model that was additionally fine-tuned with a few
real images.

distorted frame, we can find the 2D affine transformation (four degrees
of freedom) matrix as,

cos(@)s —sin(@)s d

X

sin()s  cos(@)s  d,]’ (C.1)

where 6 is the rotation angle, s is the scaling factor and d,, d, are

In principle these images are now ready to be used with the trained
deep learning model. However, it turned out that the accuracy is
enhanced if an other approach is used:

1. the deep learning predictions are performed on the original

L ; o : images
translations in x and Y faxes. This matr'lx 1s. used to vyarp.the distorted 2. this result in dislocation keypoints (these are the points on the
frame back to the original frame, which is shown in Figs. C.4b and lines)
C'4C, where for v1s.uallzat1on. p1.1rposes two frames .from one of the 3. we use the matrix from Eq. (C.1) to transform the dislocation
movies were superimposed, indicated by the two different colors. It K X .
. . e . eypoints (see Fig. C.5a and b)

can be observed, that there is a significant difference between the . s . . .

. i N . 4. finally, a spline is fitted to these transformed dislocation points.
original and transformed frames, demonstrating that this type of image
postprocessing is crucial for the whole data analysis pipeline and that The effect of the transformation can be see in Fig. C.5 which
it needs to be conducted with greatest possible accuracy. shows the dislocation of interest from all frames. The reason why

10
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FoBy e 500 nm

(a) important dectected keypoints

(b) original, unwarped frames
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500 nm

(c) warped frames

Fig. C.4. Visualization of the video stabilization process. The two colors indicate two subsequent frames, extracted from one of the videos. Keypoints in this context are,
e.g., small impurities or defects on the surface of the material that are present in all images.

(a) Original extracted curves
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Fig. C.5. The superposition of all four dislocation in experiment 1 from all frames shows the impact of the stabilization on the extracted dislocation curves.

this approach is the most suitable is that transforming images implies
integer round-off operations (due to the pixel-nature of images) — as
opposed to transforming point coordinates.

Appendix D. Details of the 2D DDD computations

D.1. The 2D DDD simulation model

To numerically study the depinning phenomenon of dislocation
lines in a heterogeneous stress field, a 2D grid model was employed
that is based on the one used in [14]. The model mimics the motion of
a single dislocation line in its glide plane due to an externally applied
stress and captures the elastic interactions between different parts of a
moving dislocation line as well as the effects of the random local lattice
distortions.

The domain consists of a rectangular grid of size L, x L, (with
periodic boundary conditions (PBCs) in horizontal x direction and a
cell size equal to the lattice constant) that represents the slip plane
of a gliding dislocation. Sites have binary values corresponding to
plastic slip: sites that are already behind the dislocation line (slipped
part) are assigned 1, and the others (unslipped part) are assigned the
value of 0. The boundaries between different-valued sites represent

11

dislocation segments. These segments are of either pure edge or pure
screw character. That is, in the simulations the Burgers vector is chosen
to be either parallel to the x or the y axis. The resolved shear stress o
acting on a segment at position r is the sum of four contributions:

0(r) = ey (1) + 0o (1) + 033 (1) (D.2)

that is, the external stress o, the stress from the self-interaction of
the dislocation o, and the pinning field o;,. We chose the lattice
constant to be equal to the size of the Burgers vector b, such that the
line tension is included in the self-interaction term. The fluctuating
lattice distortion of the HEA is captured by the pinning field o;,: an
uncorrelated shear stress value is assigned to every cell drawn from a
centered Gaussian distribution with standard deviation X;,. The self-
stress at the ith segment is the sum of the contributions of all other
segments (and their images in direction x which ensures the PBCs):
{s} {e}
Ot (r) = D, oy(r = 1)+ Y, oc(ri =), (D.3)
J J
where o,(r) and o,(r) are summed over the set of the other screw
{s} and edge segments {e}. For the details of the computation of the
segment interactions see Appendix D.2.
The evolution of the dislocation line is modeled using random
dynamics. This means that at every time step a segment is chosen
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Table D.2

Self stress in different scenarios. b, 4 and v are the length of the Burgers vector, the
shear modulus and the Poisson’s ratio, respectively. b, is the Burgers vector and x and
y are unit vector in direction x and y. r is the relative position vector measured from
the source and x and y are the relative coordinates. S = +1 and its value depends on
the orientation of both interacting segments.

bl x

Suby/ (47r3)
Sub*x/ [4n(1 = V)]

Source by

Sub*x/ (4751‘3)
Suby/ [4x(1 = v)r?]

o (r) (screw)
o.(r) (edge)

Table D.3
Simulation parameters in simulation units where distance is measured in units of » and
stress is in units of u.

Symbol Definition Value
v Poisson ratio 0.35
B stiffness constant 108
Ao stress increment per timestep 10710
L lattice width 400

randomly and the local resolved shear stress is calculated for that
segment from Eq. (D.2). Then the segment is moved in the direction
of the gliding component of the Peach-Koehler force.

In order to study the stick—slip dynamics in the framework of this
lattice model the following procedure was utilized. First, a configura-
tion with a single straight dislocation line is created. Then, the above
described random dynamics is employed. The external stress o, is
zero and then it is increased with a small constant increment Ac each
timestep. Simultaneously, the external stress is changed with a value
—BAA where AA = +b? is the plastic slip increment and B is a constant
characterizing the stiffness of the sample. Consequently, during a slip
event with a positive plastic strain increment, the stress drops. As a
result, after a transient, the system reaches a steady state with a zig-
zag like stress-time curve characteristic of stick—slip dynamics. The
statistical analysis of dynamics and the shape of the dislocation lines
were executed on the steady state regime of the simulations. Parameters
Ac and B were chosen in a manner that the stress changes very little
each time step leading to a quasi-static simulation.

D.2. Interaction of dislocation segments

The interaction of dislocation segments is computed according to
Table D.2 in the simulation. The sign S depends on both the source
and the target segments in the following way. A sign of S = +1 can be
assigned to both interacting segments. It can be computed as

S=1I(x+y), (D.4)

where [ is the unit line vector and x and y are unit vector in direction x
and y. Let us denote the signs of two interacting segments with S, and
S,. Then, if the character of the two segments is the same (e.g. they are
both edge segments) the sign of the interaction is S = 5,5, otherwise
S =-5,S,.

D.3. Parameters

The parameters used in the simulations presented in the main text
are listed in Table D.3. To ensure a quasi-static simulation the param-
eters were chosen so 46 < B < oy;yq Is satisfied where o4 is the
critical stress characteristic to the steady state stick-and-slip dynamics.

D.4. Tuning the fluctuations of the pinning stress field

In order to model appropriately the specific material at hand, the
standard deviation X;, of the pinning stress should be chosen properly.
To this end, the critical stress o;yq Of dislocation slip was tuned to
match the experimental values. As the exact value of CRSS is not

available for the temperature of 110 K maintained in our experiments,
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Fig. D.6. The scaling of critical stress o;,q With pinning stress fluctuation X,. Arrows
indicate to process of the interpolation of ;.

the CRSS was estimated with linear interpolation between 77 K and
293 K for which temperatures data is accessible in Ref. [54]. With
interpolation, 158 MPa can be obtained. The conversion of simulation
stresses to SI values can be done by multiplication with the shear
modulus ¢ =84.65GPa of the Cantor alloy. The critical stress of our
model was measured for a few different values of X;,. Then, the
2, corresponding to the desired critical stress was obtained with
interpolation (see Fig. D.6). Note, that our model exhibits a scaling
of Oyielg G;in with y ~ 1.1 which is quite close to the theoretical
expectation of y = 4/3 for binary alloys [10]. The slight difference in
the behavior of edge and screw dislocations can be explained by the
energy difference of the two types of segments. Since screw segments
are more energetically favorable, a screw dislocation is less willing to
bow out (and create new edge segments in the process) resulting in
lower critical stress.

Based on Fig. D.7 the tuning of X, is reasonable resulting in an
average external stress in the stick-slip regime of (162 + 5) MPa and

(136 + 6) MPa for edge and screw dislocations, respectively.
D.5. The robustness of the slip size distribution

While the simulated and the experimental data match very well in
terms of the exponent of the slip size distribution for the chosen value
of X, the question emerges whether the exponent is universal. To
prove that the extent of the fluctuation of internal pinning stresses
(characterized by Zpin) were varied. Fig. D.8 demonstrated that the
distribution (and the exponent 7 in particular) is robust to the change
of X,

D.6. Discussion of the roughness exponent and its robustness

The power law avalanche statistics and the self-affine avalanche
roughness revealed from the experimental data exhibit robust scaling
exponent characteristics of the stick-slip motion of the dislocation
line. Interestingly, these exponents hint at a so far not understood
behavior since the roughness exponent ¢, is rather different from
those predicted by previous dislocation-based models of depinning.
In particular, the quenched Edwards- Wilkinson (qQEW) model (that
assumes that dislocation line is equivalent to an elastic string without
any long-range interactions) predicts ¢ = 1.25 [55], whereas using
more precise discrete dislocation dynamics one obtains { ~ 1.0 [14,56—
58]. However, these models investigated the roughness of the whole
dislocation line instead of the slipped areas during events, that is, the
roughness exponent is defined as (|y(x + d) — y(x)|), « d*, where (),
denotes averaging over x. The two roughness exponents ¢ and ¢, are
usually assumed to be equivalent, however, exceptions have already
been found [59]. The avalanche size distributions have not yet been
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Fig. D.8. The slip size s distribution for different values of X ;, and different dislocation

pin
characters.

determined for single dislocation dynamics, but we note that the gEW
model predicts = = 1.11 [60] in accordance with the scaling law

T=2-2/(d+¢{) (D.5)

derived for depinning of 1D elastic lines (d =
self-interaction [61].

In order to fill the gap, a 2D DDD model has been developed based
on [14] to provide a physics-based explanation of the experimental
findings (see Methods and D for general descriptions of the model).
To model the experimental conditions and the elastic stiffness of the
loading cell, the external loading is performed through a spring which
leads to a stress drop during every plastic avalanche and a constantly
increasing stress between these events. Our results clearly show that
there is a s o« w!*w relationship between the slip sizes s and slip widths
w with ¢, ~ 0.35. The exponent seems to be robust to the change of
Zoin (see Fig. D.9).

¢,y is unusually low in our simulations as compared to the roughness
exponent ¢ of 1.25 suggested by isotropic models of the depinning of
elastic interfaces. We argue that this is due to dislocation segments
interacting via highly anisotropic interaction. The quite low value of
¢,y can be also understood by studying the evolution of slip events. Our
simulation data (for Zoin = 0.0175) shows that the total width w of an
event scales with the slipped area A as w «x A% with a,, ~ 0.8 and the
height h of the event at its thickest part scales as 7 x A% with a;, =
0.25 ~ 0.3 see Fig. D.10. That is, in a typical event height of the affected
area approaches its maximum value quickly and then only increases
incrementally while the area growth is achieved predominantly by the
widthening of the slipped surface. Consequently, the events are flat and
one can obtain a low value for exponent {,,. We also note that the
slight dependence of exponents «,, and a;, on the dislocation character
is because events in screw dislocations are even flatter due to energetic
reasons.

1) with short-range
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Fig. D.9. The scaling of slip size s with the slip width w (edge and screw dislocations
are both included).

In the case of elastic interfaces with an isotropic force field, the
exponent ¢ characterizes the roughness of the interface (in this case,
the dislocation line). Now the exponent extracted from dislocation line
shapes is denoted {. One way to obtain this exponent is by analyzing
the power spectrum of dislocation lines. Namely, if the power spectrum
P (at low wave numbers k) obey

P(k) < k77, (D.6)
then

-1
(=1 D.7)

Our results yield an exponent of ¢ ~ 0.85 (see Fig. D.11). This is
consistent with other works that have shown that for a relaxed line
¢ = 0.5 and as the system reaches the steady stick-slip regime ¢
converges to 1 [57].

D.7. Supplementary movie of the 2D-DDD simulation

The supplementary movie of the 2D discrete dislocation dynamic
simulation (supplementary movie #5) illustrates the propagation
of a dislocation line along the y-direction on the left panel and the cor-
responding slipped surface-stress curve on the right panel. The active
dislocation line is colored in gray while the passed dislocation line is
colored with purple-to-greenish color with 50 % of the transparency to
present the evolution of the dislocation.

Appendix E. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.actamat.2024.120455.
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Fig. D.11. The power spectrum of dislocation lines in the stick-slip regime in systems
with X, = 0.0175.

Data

availability

Data is available in the form of supplementary movies, annotated
training images and predictions from deep learning, as well as all
shown postprocessed data. The data is provided as supplementary data
and through https://zenodo.org/doi/10.5281/zenodo.10800695.
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