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ABSTRACT
The electrochemical reduction of carbon dioxide (eCO2RR) is a promising technology for synthesizing value-added products
required in the transition towards amore circular and renewable-based economy. In this context, the electrochemical production of
formic acid has the potential to become economically competitive to energy-demanding conventional synthetic methods, thereby
presenting a sustainable alternative. However, to enhance energy efficiency and selectivity toward the targeted product significant
technological improvements in key components (e.g., electrodes, catalysts, electrolytes, membranes, cells, solvents) are required.
Over recent years, our research has focused on understanding the influence of catalyst, gas diffusion electrode (GDE) architecture
and performance, and cell design in the eCO2RR to formic acid. This perspective article provides an overview of the current status
of these specific components, as well as our insights and those of other researchers, regarding potential future investigations and
applications.

1 Introduction

To achieve sustainability in industrial key sectors, it is nec-
essary to re-structure processes to achieve the transition to
a circular carbon economy [1, 2]. The electrochemical CO2
reduction reaction (eCO2RR) to formic acid (HCOOH) or formate
(HCOO─) helps in this endeavor by reducing the atmospheric
concentration of CO2 and represents an alternative to the
energy-intensive industrial approach to this chemical, which
requires the use of high pressure, temperature, and base.[3]
The conventional industrial route to synthesized formic acid

starts from methanol—carbonylation of methanol to produce
methyl formate, followed by hydrolysis.[4] Hence, technologi-
cal improvements within CO2-to-HCOOH electrolysis, with the
possibility to couple them to renewable sources such as wind
and solar power are paramount to enable this CO2-negative
synthetic transformation.[5] Herein, the term Power-to-HCOOH
comes into play as a promising approach to convert electrical
power, especially that generated from renewable sources during
periods of high availability, into HCOOH as a storage fuel and
chemical.[6] This could be converted back into energy during
periods of low renewable energy production. Besides, the current
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concentrations of CO2 in the atmosphere, along with future
predictions, necessitate the exploration of technologies such as
CO2 capture and storage to effectively mitigate the effects of
climate change [7–9]. CO2 electroreduction benefits from these
technologies, as it guarantees renewable feed supply. HCOOH
offers a valorization option in various fields, such as the textile
and leather industries, as a preservative and antibacterial agent,
in the rubber industry, as a pH regulator for food products, and in
biological andmedical research.Other potential applications, still
under investigation, include its use as an energy carrier for global
transportation logistics and application in direct formic acid fuel
cells, indirect formic acid fuel cells, syngas storage medium,
chemical reagent in organic synthesis (e.g., as CO surrogate),
and feed for bioprocesses [4, 10]. Compared to other eCO2RR
products, HCOOH has the potential to become economically
competitive with conventional synthesis routes.[11, 12] However,
its implementation still requires improvements in energy effi-
ciency, current density, selectivity, and operation time. In this
regard, technological advances are paramount toward enhanced
product selectivity at higher current density. We, among other
researchers, have a great interest in understanding, within the
eCO2RR to HCOOH, the effect of catalyst, gas diffusion electrode
(GDE) architecture and performance, and cell design. Hence, this
article showcases our thoughts in combinationwith those of other
groups on these key points.

1.1 Electrocatalysts

Most of the research within eCO2RR has focused on C1 products,
where the 2e− reactions yielding CO and HCOOH are the most
favorable. Although the electroreduction to other hydrocarbon
or alcohol products is thermodynamically more favorable by
their standard potentials, the requirement for more electron
equivalents renders them kinetically less favorable.[13, 14] In the
context of HCOOH production, operating within the potential
range for the eCO2RR to HCOOH inevitably results in some
degree of hydrogen evolution reaction (HER) and CO production.
Hence, kinetic differentiation provided by catalyst selection is of
utmost importance for achieving the targeted product with high
selectivity and efficiency [15, 16]. This underscores the necessity
for a deep understanding of the reaction mechanism, which
is essential for advancing in the field toward more sustainable
and efficient chemical transformations [17]. The lack of exper-
imental observations, given the heterogeneity of the catalysis
and operational setup, makes it difficult to monitor the reaction
and isolation of intermediates. Therefore, the elucidation of the
catalytic mechanism relies heavily on computational studies.
These propose three possible mechanisms (Figure 1a), in which
HCOOH evolving from an *OCOH intermediate (* denotes the
surface site binding to the adjacent atom, i.e., oxygen) is the
most energetically favorable (Figure 1c).[17–20] Unlike other
C1 products (CO, methane, methanol), which are suggested to
develop through the initial *COOH and subsequent *CO species,
the reduction of CO2 to HCOOH follows a distinct route [21].

Catalysts based on tin, bismuth, indium, lead, palladium, and
cobalt elements have been tested and are promising candidates
in the eCO2RR to HCOOH (see also Table 1) [22–25]. Tin and
bismuth exhibit both high activity and selectivity and are widely
abundant and environmentally friendly [3, 5, 26]. Additionally,

compared to metals with high market prices (e.g., indium,
palladium), toxicity (lead), and low selectivity (e.g., cobalt), tin-
and bismuth-based catalysts emerge as a popular choice in the
scientific community. The literature is dominated by tin and tin
alloys,where the production ofHCOOHcanbe enhanced by engi-
neering defects or doping tomodulate the reactions at the catalyst
surface. In the last years, the development of syntheticmethods to
produce high surface areas possessing many active sites focused
on metal-oxide and metal-sulfide has attracted a lot of attention.
Studies on bismuth oxides demonstrated that the selectivity of
the high surface area of bismuth nanosheets outperformed that
of bulk bismuth [27]. Our investigations with custom-made tin
oxide catalysts also showed that the presence of high surface
area accounts for better performances. We produced tin oxide
nanoparticles by hydrothermal (∼5 nm), sol-gel (> 10 nm), and
solid-state (10–20 nm) synthetic procedures (Figure 2b–d). The
best performance in terms of Faradaic efficiency was obtained
with the hydrothermal particles, which we ascribed to the large
surface area and a large number of lattice defects [28]. The
conversion of CO2 to HCOOH, as for other eCO2RR products,
is limited by the low solubility of CO2 in aqueous electrolytes.
The use of GDEs circumvents this problem and allows selectively
producing HCOOH at higher current densities. Deposits of tin
oxides and tin on GDEs achieved current densities of 385 ± 19
and 214 ± 6 mA cm−2 respectively, with HCOO─ selectivity > 70%
[29]. In operando ATR-IR spectroscopy indicated the presence of
a tin carbonate intermediate and helped in the proposal of a new
mechanism (Figure 2a). A two-electron reduction converts SnO2
to SnII oxyhydroxide, which reacts with CO2 to form Sn-OCOOH.
Subsequently, through a two-electron proton-coupled reaction,
the SnII oxyhydroxide is restored, with the release of HCOO─.[30]
Based on this knowledge, a two-valence tin oxide nanosheet
grown on nanorods producing 94% of HCOO─ at ∼330 mA cm─2

was developed [31]. The authors attributed this high efficiency to
the presence of abundant low coordination SnII active sites.

Despite current advancements in catalysis design, the search for
active and selective electrocatalysts with low cost still remains
a challenge to activate the kinetically sluggish CO2 reduction
reaction—especially when aimed for large-scale production—
emphasizing the need for a better understanding of the reaction
mechanisms.

1.2 Gas Diffusion Electrodes

In the last decades, the research in the field of CO2 elec-
troreduction mainly focused on the synthesis of active and
selective catalysts. However, the classical cell setups commonly
employed to investigate these materials are constrained by the
low diffusion coefficient of the dissolved CO2 in the bulk
electrolyte [50] together with the long diffusion distance to
the electrode. These factors hinder the sufficient availability
of CO2 on the catalyst surface, leading not only to a CO2-
starved catalyst layer but also resulting in a favored parasitic
HER as a side reaction. Furthermore, it restricts the achievable
current densities to a few mA cm−2,[51] which considerably lags
behind the high current densities (> 300 mA cm−2) necessary
for industrial application.[52] To overcome these diffusion and
mass transport limitations GDE can be used due to its unique
structure.[53] GDEs enable the direct feeding of the CO2 gas to
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FIGURE 1 DFT calculations on the different reaction pathways for the eCO2RR to HCOOH on bismuth planes of (012), (003), (110), and (104). (a)
Scheme of the three possible mechanism paths, which proceed via a *COOH intermediate (path 1), *OCOH intermediate (path 2), or the formation of
*H (path 3). Reaction free energy diagrams for (b) path 1, (c) path 2, and (d) path 3, when zero overpotential is applied (bias potential U = –0.21 VSHE).
Reprinted with permission from ACS Catal. 2017, 7, 5071–5077. Copyright 2017 American Chemical Society.

FIGURE 2 (a) Possible reaction mechanism for the eCO2RR to HCOO─ on SnO2 mediated by a surface-bound carbonate intermediate. TEM
images of investigated SnO2 nanoparticles at high magnification synthesized by (b) hydrothermal, (c) sol-gel, and (d) solid-state.
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the catalyst layer, facilitating reactant transport and distribution
while enhancing the eCO2RR through their unique multilayer
configuration.[51] The first two layers of a GDE are called gas
diffusion layer (GDL), and it is only when the catalyst is added
on top that it becomes a complete GDE. The material of a
GDL can consist not only of carbonaceous materials [54–56] but
also of metals [57] (more specific to fuel cells) or polytetrafluo-
roethylene (PTFE).[58] In carbonaceous-based GDE,[53, 59–61]
the multilayer structure consists of: i) the carbon fibers, ii) an
optional microporous layer (MPL), and most importantly, iii) the
catalyst layer. Across the different GDE layers PTFE is commonly
employed for hydrophobic treatment to prevent early electrode
flooding. The loss of hydrophobicity and/or binder degradation
during operation, especially in flow electrolyzers, are the primary
mechanisms triggering a decline in electrochemical performance
due to electrode flooding [54, 62–67]. Other factors contributing
to electrode deactivation include carbonate formation [68–70],
catalyst agglomeration, and chemical changes including catalyst
poisoning.[71, 72] Therefore, the investigation of gas diffusion
electrodes is one important task in the implementation of the CO2
electroreduction to HCOOH as it not only bears the catalyst layer
but promotes the whole reduction reaction.

Among the different components of the multilayer structure
of a carbonaceous-based GDE, the importance of a MPL is
particularly notable. In a recent study, we observed how the
presence of a MPL enhances both the cathodic current density
at −1.15 VRHE during linear sweep voltammetry (LSV) and the
Faradaic efficiency compared to GDEs without one [53]. Our
findings revealed that the MPL acts as a physical barrier for the
nanoparticles during deposition, leading to a focused catalyst
layer on top of theGDEand an enhanced contact to the electrolyte
(Figure 3a). The open structure of the GDEs without MPL, how-
ever, leads to a deep penetration of the catalyst nanoparticles into
the inner GDL volume. As a result, some catalyst nanoparticles
are positioned beyond the reach of the electrolyte (Figure 3b),
leading to lower Faradaic efficiency.[55, 73, 74] The hydrophobic
treatment also plays a pivotal role in terms of obtained Faradaic
efficiency, since the electrode wetting determines the extent
of the CO2 electroreduction at the GDE/electrolyte interface
[75]. Recently [53], we showed that lower hydrophobic treat-
ment (10% vs. 30%) at GDEs without MPL exhibited higher
Faradaic efficiency. The degradation of the binder also influences
changes in hydrophobicity. Throughout repeated operation of
GDEs utilizing Nafion as a binder, we observed a decrease
in Faradaic efficiency and a reduction in electrode potential,
fostering the unwanted HER.[59] These effects likely stemmed
from a progressive loss of hydrophobicity due to structural
changes of the side chains and/or sulfonic groups, and states a
rather unsuitability of Nafion as binder in the investigated setup.
Considering ourmeasurementswere conducted in a gas-fed batch
cell, comparing the impact of hydrophobic treatment to other
designs, such as membrane electrode assemblies (MEA), might
yield different results.We found reports indicating either superior
performance in GDEs with higher PTFE content [76], or no
significant impact of the hydrophobic treatment on the Faradaic
efficiency.[55] Deactivating factors in the GDE, such as electrode
flooding induced by the loss of hydrophobicity or thinning of the
binder (Figure 3d), catalyst agglomeration (Figure 3e), carbonate
formation (Figure 3f), and chemical changes (Figure 3g), directly
affect the eCO2RR efficiency. Hence, a meticulous GDE design,

with minimal structural changes, particularly over extended
operation times, is fundamental to guarantee high and stable
HCOOH yields [71, 72, 77].

1.3 Electrolysis Cells

To achieve industrial applicability, the eCO2RR to HCOOHmust
be performed at high selectivity, high current density, low overall
cell voltages, and with long-term stability [78]. A multitude of
promising reactors have been designed for this purpose, including
several designs of flow cells, such as zero-gap, anion exchange
membrane (AEM) free, and direct formic acid production (DFAP)
cell designs (Figures 4a–d).[79–87] In the context of this article,
we do not consider other designs, particularly those with liquid-
fed cathodes [88, 89], as they typically only enable low current
densities. In the electrolyzers discussed here, the anode typically
performs an oxygen evolution reaction (OER) in an aqueous
anolyte and is separated from the cathode by at least a cation
exchange membrane (CEM) or a bipolar membrane to avoid
HCOO(H) loss at the anode. Each reactor design optimizes
single performance indicators, albeit at the expense of others.
Zero-gap reactors (Figure 4a) provide the lowest cell voltages
and specific energy consumptions using OER in the anode
(2.4 V and 3.35 kWh.kg−1 at 400 mA.cm−2) [90], while AEM-
free cells (Figure 4b) can deliver the highest Faradaic efficiencies
(100%) [86] and current densities (2000 mA.cm−2).[91] A three-
compartment design, employing the hydrogen oxidation reaction
(HOR) at the anode (Figure 4c) stands out for its capability to
achieve the highest product concentrations (100%).[79] Tables 2
and 3 present the optimized performance indicators for each
electrolyzer design. The majority of designs (Figures 4a, b, and d)
involve the collection of HCOO(H) as a diluted product in
water.[3, 4, 6, 10–12] Those employing alkaline electrolytes, such
as KOHandKHCO3, tomitigate theHER (Figures 4a, b) [4, 53, 80,
92–95] result in the formation of HCOO─, necessitating energy-
intensive workup to obtain HCOOH [52, 96]. While the use of
acidic electrolytes such as H2SO4 and KCl nominally produce
HCOOH [97, 98] in designs different fromDFAP [99], the solution
is saturated with alkaline salts required to suppress the HER.[98,
100]

In our investigations, we decided to utilize DFAP (Figure 4d)
due to its capability of producing aqueous HCOOH free of
electrolyte impurities [25] by using only distilled water as a liquid
feed. Additionally, it offers performance advantages attributed
to its specific design features, which include: (i) a gas-fed GDE
cathode, facilitating high current densities, (ii) an anode fed
with deionized water to avoid the presence of alkaline ions,
(iii) a center compartment filled with a fixed bed of a proton
exchange resin (for example Amberlite IR-120H) [99] to enhance
proton conduction and provide structural stability, from which
the protonated HCOOH product is flushed out using deionized
water, (iv) a CEM situated between the anode and the center
compartment, conducting protons while preventing HCOOH
diffusion to the anode, and (v) an AEM positioned between the
cathode and the center compartment, allowing the transport
of HCOO─ and OH─ anions, while maintaining alkalinity in
the cathode by preventing back diffusion of HCOOH from the
acidic center compartment to the alkaline cathode. Besides, the

Electrochemical Science Advances, 2025 5 of 12
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FIGURE 3 Schematic illustration of the reaction conditions at the investigated gas diffusion electrodes (GDEs) surface, displaying an enlarged
depiction as an inset. (a) GDE with a microporous layer (MPL) that leads to a focused catalyst layer on the GDE surface. (b) GDE without MPL, thus,
missing physical barrier for the catalyst nanoparticles (SnO2, shown in yellow color) during the GDE manufacturing. Representation of structural
changes on the GDE during operation. (c) Pristine GDE state at t = 0, and final states showcasing deterioration by (d) binder thinning, (e) catalyst
agglomeration, (f) carbonate formation—depicted in brown color, and (g) chemical changes occurring at the catalyst.

FIGURE 4 Examples of CO2-to-HCOO(H) reactor designs. a) Zero-gap, b) AEM-free c) gas-fed DFAP and d) water-fed DFAP cells.

AEM serves to regulate water transport to the cathode, hence,
preventing its flooding and, as a consequence, the HER [81].

In DFAP, the production of a pure aqueous HCOOH solution
eliminates concerns regarding salt precipitation due to the
absence of alkaline ions and avoids post-treatment processes such
as electrodialysis which simplifies product workup significantly.
This makes DFAP arguably the most promising reactor design

from an economic point of view [52, 96]. While the HOR-
based DFAP (Figure 4c) requires H2 as an expensive feed, the
DFAP employing anodic OER requires only CO2 and water as
reactants, thereby reducing operational costs. This design offers
enhanced performance indicators, including current densities of
250 mA cm−2 [99], cell voltages of 3.2 V [81], concentrations of
13wt% [99] (100% for short periods via an adapted design) [79],
specific energy consumptions of 5.4 kWh kg−1, and long-term
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operation exceeding 1000 h [99], making it a promising choice
compared to other designs. But, while this significant progress
has beenmade in understanding and optimizing this electrolyzer,
the investigation of the AEM has been uniquely centered on
the use of Sustainion, given the good operation performances
[79, 81, 94, 99]. Given this lack of diversity, we explored the use
of PiperION AEMs for the same cell concept for the first time.
The observed Faradaic efficiencies and specific energy consump-
tions with PiperION are comparable to the results obtained for
Sustainion AEMs, making PiperION AEMs a viable alternative
[60]. Furthermore, the versatility of this design is highlighted by
the use of both bismuth-[79, 93, 99, 101–103] and tin-based [53,
81] catalysts, with bismuth catalysts showing greater promise.
Additional operational flexibility is demonstrated through the
incorporation of a gas-fed center compartment or a hydrogen
oxidation-based anode [79, 94].

In terms of catalyst or materials development, certain flow
cell designs may be more suitable, as they may allow for an
easier implementation of reference electrodes [45, 89, 98, 104],
in operando analysis [69, 105], and temperature or concentration
control. However, DFAP holds an advantage over other reactor
designs due to the absence of flooding and carbonate precipitation
issues, along with the clear separation of the three compart-
ments.[81, 106] From an application point of view, we consider
DFAP to be the overall best performing and most promising reac-
tor design for CO2-to-HCOO(H) electroreduction. Nevertheless,
CO2-to-HCOO(H) electrolysis still encounters several challenges.
Most electrolyzers rely on fluoropolymer Nafion, either as a
CEM or as a binder, due to its high chemical stability, but this
dependence limits their versatility [46, 47, 49, 52, 54, 55, 58–
60, 62–64]. In many electrolyzers, including DFAP designs, the
nucleophilic attack of hydroxide ions on the cationic moieties of
AEMs may result in limited lifetimes [107]. Moreover, the anodic
catalyst IrO2 employed in DFAP is very scarce and expensive, and
attempts to reduce catalyst loading may impair durability [108,
109]. Since similar problems are also encountered in the fields of
proton [110, 111] and anion exchangemembranewater electrolysis
[112, 113], innovative developments are expected to occur rapidly,
which could be adapted to the electrolysis of CO2 to HCOO(H).

2 Conclusion

To date, significant progress has been made in both designing
and studying catalyst performance in the eCO2RR to HCOO(H).
However, despite progress, a better understanding of the reaction
mechanism is still necessary. Theoretical investigations should
be accompanied by in operando spectroscopy to detect reaction
intermediates to elucidate more credible mechanistic pathways.
This is not a simple task, given that different metals and
operational conditions could promote different mechanisms.
Besides, given the reactivity of the reaction intermediates, the
design of electrolytic cells coupled with spectroscopic methods
is required to identify these short-living species. Catalyst design
on H-cells has centered on tin, bismuth, indium, lead, palla-
dium, and cobalt. Among these, tin- and bismuth-based catalysts
have gained popularity due to their low cost, abundance, and
environmentally friendly nature. The implementation of catalysts
in GDE architectures is crucial for enhancing the efficiency of
the eCO2RR and enabling the selective production of HCOOH

at higher current densities. However, deactivating factors, such
as electrode flooding induced by the loss of hydrophobicity
or thinning of the binder, catalyst agglomeration, carbonate
formation, and chemical changes, directly affect the eCO2RR
efficiency. Hence, a well-designed electrode architecture stable
for long operation times is essential to guarantee constant and
optimal yields. In the literature,most reported studies in flow cells
utilize cathodic electrodes based on GDE with tin- and bismuth-
based catalysts, along with commercial membranes. AEM-free
and ZG electrolyzers primarily rely on Nafion membranes of
different thicknesses (50 – 413 µm) and the use of alkaline
cations in neutral or basic media (e.g., KHCO3, K2SO4, KOH)
to mitigate the HER. The DFAP design typically incorporates a
combination of Nafion membranes with Sustainion or PiperION
AEMs to enhance the key performance parameters. While AEM-
free and ZG reactor designs show promising performance, the
DFAP cell has the unique advantage of producing HCOOH
directly and in higher concentrations than the other reactor
designs. Furthermore, the DFAP design inherently addresses
challenges like flooding and salt precipitation encountered in
other flow-cell designs. Hence, to achieve the required high
Faradaic efficiencies and higher product concentrations over
extended operation times, necessary for industrial application,
this design is arguably the most promising from an industrial
perspective. While currently achieved concentrations in DFAP
typically fall within the range of ∼13 wt%, it is worth noting
that commercial HCOOH is available in concentrations ranging
between 85 and 99wt%. In non-industrial processes, azeotropic
distillation [52, 121] is being evaluated as a viable method to
increase formic acid concentrations from 30 to 85 wt%. DFAP
reactors with gas flow in the center compartment achieve more
than 30 wt%, making them candidates for azeotropic distillation,
however, they still require optimization for long-term operational
stability. Additionally, the pervaporation [122] process to separate
H2O/HCOOH mixtures has also been proposed to obtain higher
concentrations at a lower cost but is still in the research phase.
Hence, future developments in these downstream processes,
combined with the scaling up of the active area and cell stacking
in the reactor designs, could make electrochemical formic acid
production economically competitive with the current industrial
methods. Industrial production of formic acid occurs on a large
scale at centralized factory sites where energy consumption,
including the concentration process, is optimized. Currently, the
eCO2RR to HCOOH cannot economically compete to produce
concentrated HCOOH but offers a promising future in emerging
applications that can utilize the diluted form. Especially direct
and indirect formic acid fuel cells and biorefinery applications
show optimum operation. Besides, the electrochemical produc-
tion of green HCOOH is highly versatile, enabling its synthesis
on a smaller scale in a decentralized manner with the possi-
bility to couple it in a multi-synthesis reactor for post-synthetic
transformations.
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