001032427 001__ 1032427
001032427 005__ 20250203103112.0
001032427 037__ $$aFZJ-2024-06235
001032427 1001_ $$0P:(DE-Juel1)188319$$aSpreizer, Sebastian$$b0$$eCorresponding author$$ufzj
001032427 1112_ $$aBernstein Conference 2024$$cFrankfurt$$d2024-09-29 - 2024-10-02$$wGermany
001032427 245__ $$aRapid prototyping in spiking neural network modeling with NESTML and NEST Desktop
001032427 260__ $$c2024
001032427 3367_ $$033$$2EndNote$$aConference Paper
001032427 3367_ $$2BibTeX$$aINPROCEEDINGS
001032427 3367_ $$2DRIVER$$aconferenceObject
001032427 3367_ $$2ORCID$$aCONFERENCE_POSTER
001032427 3367_ $$2DataCite$$aOutput Types/Conference Poster
001032427 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1736142599_25368$$xAfter Call
001032427 520__ $$aNEST [1] is a well-established open source simulator providing researchers in computational neuroscience with the ability to perform high-performance simulations of spiking neuronal networks. However, as the simulation kernel is written in C++ for performance reasons, this makes it challenging for researchers without a programming background to customize and extend the built-in neuron and synapse models.In order to satisfy both the need for high-performance simulation codes and a good user experience in terms of easy-to-use modeling of neurons and synapses, NESTML [2] was created as a domain-specific language with an unambiguous syntax. Alongside the language itself, a toolchain was developed that parses the model, analyzes the underlying equations, and performs code generation. The code generated by NESTML can be used in simulations of brain activity on several platforms, in particular the NEST Simulator. However, specification of the network architecture requires using the NEST Python API, which still requires users to be skilled at programming. This poses a problem for beginners, as experience shows that they usually have little to no coding experience.This issue was addressed by the development of NEST Desktop [3], a graphical user interface that serves as an intuitive, programming-free interface to NEST. The interface is easily installed and accessed via an internet browser on the computers of individual users, or in cloud-based deployments, which have already been proven in the field in student courses at universities across Europe.Here, we demonstrate for the first time the integration of all three components: NEST Desktop, NESTML and NEST. As a result, researchers and students can customize existing models or develop new ones using NESTML, and have them instantly available to create networks using the graphical interface of NEST Desktop, before simulating them efficiently using NEST as a back-end. The combined strength of these components creates a low-barrier environment for rapid prototyping and exploration of neuron, synapse and network models.<br><br>References<br>NEST (Neural Simulation Tool), Gewaltig M-O & Diesmann M (2007), 10.4249/scholarpedia.1430 <br>NESTML 7.0.1, Linssen C et al. (2024), 10.5281/zenodo.10966350 <br>NEST Desktop, Spreizer et al. (2021), 10.1523/eneuro.0274-21.2021
001032427 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001032427 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001032427 536__ $$0G:(DE-HGF)POF4-5235$$a5235 - Digitization of Neuroscience and User-Community Building (POF4-523)$$cPOF4-523$$fPOF IV$$x2
001032427 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x3
001032427 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x4
001032427 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x5
001032427 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x6
001032427 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x7
001032427 536__ $$0G:(DE-HGF)SO-092$$aACA - Advanced Computing Architectures (SO-092)$$cSO-092$$x8
001032427 7001_ $$0P:(DE-Juel1)176305$$aLinssen, Charl$$b1
001032427 7001_ $$0P:(DE-Juel1)186954$$aBabu, Pooja$$b2
001032427 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b3
001032427 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b4
001032427 7001_ $$0P:(DE-HGF)0$$aWeyers, Benjamin$$b5
001032427 8564_ $$uhttps://abstracts.g-node.org/conference/BC24/abstracts#/uuid/67a7df04-9555-4332-8d50-a391ea708973
001032427 909CO $$ooai:juser.fz-juelich.de:1032427$$pec_fundedresources$$pVDB$$popenaire
001032427 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188319$$aForschungszentrum Jülich$$b0$$kFZJ
001032427 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)176305$$a Department of Computer Science 3 - Software Engineering, RWTH Aachen University, 52074 Aachen, Germany$$b1
001032427 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)176305$$a Simulation & Data Lab Neuroscience, Forschungszentrum Jülich GmbH, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), JARA, 52425 Jülich, Germany$$b1
001032427 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)186954$$a Simulation & Data Lab Neuroscience, Forschungszentrum Jülich GmbH, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), JARA, 52425 Jülich, Germany$$b2
001032427 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)186954$$a Department of Computer Science 3 - Software Engineering, RWTH Aachen University, 52074 Aachen, Germany$$b2
001032427 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b3$$kFZJ
001032427 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b4$$kFZJ
001032427 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department IV - Computer Science, Human-Computer Interaction, University of Trier, Trier, Germany$$b5
001032427 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001032427 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001032427 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5235$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x2
001032427 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x3
001032427 9141_ $$y2024
001032427 920__ $$lyes
001032427 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001032427 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x1
001032427 980__ $$aposter
001032427 980__ $$aVDB
001032427 980__ $$aI:(DE-Juel1)JSC-20090406
001032427 980__ $$aI:(DE-Juel1)IAS-6-20130828
001032427 980__ $$aUNRESTRICTED