001     1032430
005     20250224202207.0
024 7 _ |a 10.1016/j.adapen.2024.100192
|2 doi
024 7 _ |a 10.34734/FZJ-2024-06237
|2 datacite_doi
024 7 _ |a WOS:001352873600001
|2 WOS
037 _ _ |a FZJ-2024-06237
082 _ _ |a 333.7
100 1 _ |a Behrens, Johannes
|0 P:(DE-Juel1)192171
|b 0
|e Corresponding author
245 _ _ |a Reviewing the complexity of endogenous technological learning for energy system modeling
260 _ _ |a [Amsterdam]
|c 2024
|b Elsevier ScienceDirect
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1731651683_15002
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Energy system components like renewable energy technologies or electrolyzers are subject to decreasing investment costs driven by technological progress. Various methods have been developed in the literature to capture model-endogenous technological learning. This review demonstrates the non-linear relationship between investment costs and production volume, resulting in non-convex optimization problems and discuss concepts to account for technological progress. While iterative solution methods tend to find future energy system designs that rely on suboptimal technology mixes, exact solutions leading to global optimality are computationally demanding. Most studies omit important system aspects such as sector integration, or a detailed spatial, temporal, and technological resolution to maintain model solvability, which likewise distorts the impact of technological learning. This can be improved by the application of methods such as temporal or spatial aggregation, decomposition methods, or the clustering of technologies. This review reveals the potential of those methods and points out important considerations for integrating endogenous technological learning. We propose a more integrated approach to handle computational complexity when integrating technological learning, that aims to preserve the model's feasibility. Furthermore, we identify significant gaps in current modeling practices and suggest future research directions to enhance the accuracy and utility of energy system models.
536 _ _ |a 1111 - Effective System Transformation Pathways (POF4-111)
|0 G:(DE-HGF)POF4-1111
|c POF4-111
|f POF IV
|x 0
536 _ _ |a 1112 - Societally Feasible Transformation Pathways (POF4-111)
|0 G:(DE-HGF)POF4-1112
|c POF4-111
|f POF IV
|x 1
536 _ _ |a 110 - Energiesystemdesign (ESD) (POF4-100)
|0 G:(DE-HGF)POF4-110
|c POF4-100
|f POF IV
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zeyen, Elisabeth
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hoffmann, Maximilian
|0 P:(DE-Juel1)176842
|b 2
|u fzj
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 3
|u fzj
700 1 _ |a Weinand, Jann M.
|0 P:(DE-Juel1)190787
|b 4
|u fzj
773 _ _ |a 10.1016/j.adapen.2024.100192
|g Vol. 16, p. 100192 -
|0 PERI:(DE-600)3060775-9
|p 100192 -
|t Advances in applied energy
|v 16
|y 2024
|x 2666-7924
856 4 _ |u https://juser.fz-juelich.de/record/1032430/files/1-s2.0-S2666792424000301-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1032430
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)192171
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)192171
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176842
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)129928
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)190787
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-111
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Energiesystemtransformation
|9 G:(DE-HGF)POF4-1111
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-111
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Energiesystemtransformation
|9 G:(DE-HGF)POF4-1112
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|x 2
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-04-15T07:58:37Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-04-15T07:58:37Z
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Double anonymous peer review
|d 2021-04-15T07:58:37Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-09-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICE-2-20101013
|k ICE-2
|l Jülicher Systemanalyse
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICE-2-20101013
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21