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A B S T R A C T

Energy system components like renewable energy technologies or electrolyzers are subject to decreasing in
vestment costs driven by technological progress. Various methods have been developed in the literature to 
capture model-endogenous technological learning. This review demonstrates the non-linear relationship between 
investment costs and production volume, resulting in non-convex optimization problems and discuss concepts to 
account for technological progress. While iterative solution methods tend to find future energy system designs 
that rely on suboptimal technology mixes, exact solutions leading to global optimality are computationally 
demanding. Most studies omit important system aspects such as sector integration, or a detailed spatial, tem
poral, and technological resolution to maintain model solvability, which likewise distorts the impact of tech
nological learning. This can be improved by the application of methods such as temporal or spatial aggregation, 
decomposition methods, or the clustering of technologies. This review reveals the potential of those methods and 
points out important considerations for integrating endogenous technological learning. We propose a more in
tegrated approach to handle computational complexity when integrating technological learning, that aims to 
preserve the model’s feasibility. Furthermore, we identify significant gaps in current modeling practices and 
suggest future research directions to enhance the accuracy and utility of energy system models.

1. Introduction

In recent years, technological learning has become an important 
factor in energy system modeling as the cost of technologies such as 
solar PV, batteries, and fuel cells has decreased significantly [1]. The 
concept of technological learning was first outlined by Wright in 1936 
[2] and describes the relationship between the produced quantity of a 
technology and the associated technology costs, and later became 
known as "learning-by-doing." More precisely, it states that every 
doubling of a produced quantity leads to a relative reduction in costs 
equal to the learning rate of the technology [2]. By integrating this 
concept into recent energy system models, researchers can gain a better 
understanding of how these effects influence current transformation 
pathways towards sustainable energy systems. An early and steady 
reduction of emissions, for example, could be more cost-effective than a 
later and rapid transformation path [3], and ambitious paths would be 
accompanied by a strong and difficult-to-implement ramp-up of solar 

and wind energy [4]. While major cost reductions have recently 
occurred for wind turbines [5], solar energy [6], and electricity storage 
[7], experts expect similar cost reductions for other technologies, such as 
direct air capture [8] or electrolysis [9]. Thereby, the timing of cost 
reductions heavily depends on learning rates and production numbers 
[10].

In general, various models can be used for energy system analysis, 
including simulations [11], agent-based models [12], and system dy
namics models [13]. For these models, technological learning and its 
non-linear properties can be incorporated without significant increase in 
computational cost. While these models are useful for exploring poten
tial system behavior, decentralized decision making, or the evolution of 
systems over time, they are typically not designed to identify optimal 
solutions. Optimization models, on the other hand, can be helpful in 
exploring cost-optimal system operations and designs. These models are 
therefore particularly useful for strategic decision support, as they pro
vide robust support for the design of energy system transformation 
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strategies [14].
However, due to the non-linear behavior of technological learning 

and the computational challenges that emerge with it, the cost re
ductions are usually formulated as exogenous quantities in energy sys
tem optimization models [15]. This can lead to a self-fulfilling prophecy 
in the modeling results, as the cost development for innovative tech
nologies is based on exogenous cost assumptions, which are associated 
with certain developments in the produced quantity. A high predicted 
production quantity therefore usually leads to low technology costs, 
which in turn favors a strong expansion of the technology in the opti
mization model [16]. In addition, using exogenous cost assumptions 
reduces investment costs even without prior deployment and thus 
overestimates technological learning [17]. The energy system receives 
the benefits of technological learning "for free," as the system can simply 
wait until exogenously-set technology costs fall below a certain level and 
the use of a technology becomes economically-viable [18,19]. This 
problem can be overcome by endogenously calculating the cost devel
opment. A comprehensive summary of the fundamentals of endogenous 
technological learning in energy system models can be found in the 
Supplemental Information. While technological learning has been 
increasingly integrated into energy system models, existing approaches 
often fail to capture the full complexity of non-linear learning processes, 
leading to inaccuracies in system design projections. In this review, we 
critically examine these gaps and present methodologies that provide a 
more comprehensive approach to integrate endogenous technological 
learning and handle the increased computational complexity in order to 
ensure the model’s feasibility while still preserving the model’s 
accuracy.

Previous review papers on technological learning in energy system 
modelling offer an adequate summary of the fundamental concept of 
technological learning [18,20–24] as well as the rates at which different 
technologies learn [25,26]. In general, various studies focus on learning 
effects in technology assessments. The most prominent review in this 
regard was conducted by Rubin et al. [25] in 2015, which deals with the 
approximation of learning rates for learning-by-doing and 
learning-by-searching. The authors summarize various studies and 
provide a database for the learning rates of eleven electricity-producing 
technologies. This database was later extended and updated by Samadi 
[26] in 2018, who also provided learning rates for different major 
electricity-producing technologies, on the basis of which an estimate for 
future learning rate ranges was derived. In addition, Samadi [26] em
phasizes that the cost development of a technology most likely does not 
depend solely on experience but also on several other factors, e.g., ex
penditures in R&D or the utilization of a technology.

When it comes to reviews dealing with endogenous technological 
learning within energy system optimization models, the number of 
existing review papers becomes a lot smaller. The most recent review in 
this area was conducted by Ouassou et al. [20] in 2021, who provided an 
overview of different approaches for implementing endogenous tech
nological learning in energy system models. In addition to the meth
odological focus of the study on concepts for modeling floor costs, 
component-based learning, and declining learning rates, the authors 
also put an additional focus on hydrogen production technologies. They 
summarize studies that deal with learning by doing in hydrogen pro
duction and provide an overview of learning rates for selected tech
nologies. Aside from the publication by Ouassou et al. [20], some earlier 
reviews deal with learning effects in energy system models. For example, 
Kram et al. [21] provided an overview of models that were part of the 
European Union funded "Energy Technology Dynamics and Advanced 
Energy System Modelling" (TEEM) project from 1998–1999. The main 
objective of this project was to enable energy system models to endog
enously incorporate technological learning and therefore to compare 
different implementations and assess their advantages and drawbacks. 
The study provides an overview of how technological progress can be 
considered in energy system models and corresponding issues. The re
view was supplemented by the final report of the TEEM project by 

Seebregts et al. [18], which summarizes the overall findings and con
clusions of the project. The report also provides an overview of the 
utilized models and their characteristics, how technological progress 
was considered, and the benefits and limitations identified during the 
project. In 2006, this work was extended by Berglund and Söderholm 
[22], who updated the overview and, amongst others, included publi
cations created during the "System Analysis for Progress and Innovation 
in Energy Technologies" (SAPIENT) project from 2000–2002, which was 
a successor of the TEEM project [23,24]. The review analyzed various 
studies in terms of how they incorporated technological progress into 
their models and what the main findings of these were. Based on this 
analysis, they identified several problems of an endogenous consider
ation of technological progress in energy system models (e.g., un
certainties regarding learning rates or the incomplete representation of 
diffusion mechanisms) but also highlight the importance of such an 
implementation.

There is a shortage of literature that covers the concrete integration 
of technological learning into optimization models for energy systems as 
well as methods to handle the increased model complexity. To address 
this research gap, we conduct a systematic literature review that is 
focused on the various available implementations, studied technologies, 
and techniques for managing the increased model complexity. We also 
discuss common pitfalls and things to consider when dealing with 
technological learning such as the use of growth rates, parameter 
availability and quality, and the use of additional learning parameters to 
provide guidance on how to best integrate technological learning.

The remaining paper is structured as follows. Section 2 provides an 
explanation of the review methodology, including the search query, 
exclusion criteria, and a description of the concept matrix. The results of 
the review based on the concept matrix are presented in Section 3. A 
comprehensive discussion on the use of technological learning in energy 
system models can be found in Section 4. The paper is concluded in 
Section 5.

2. Review methodology

This section describes the methods used in this study to identify and 
analyze the relevant literature based on the guidelines by Webster & 
Watson [27]. First, a collection of relevant keywords was created and 
translated into a search string. The resulting search string was as shown 
below and resulted in a total of 422 matches in the Scopus [28] literature 
database on 01/10/2024:

TITLE-ABS-KEY((energy) W/3 (model* OR optimiz* OR analysis OR 
assessment) AND ("learning curve*" OR "learning rate*" OR "learning by 
doing" OR "experience curve*" OR "endogen* learn*" OR "techno* 
learn*" OR "techno* progress"))

In a second step, the titles and abstracts of the query results were 
analyzed, which led to the exclusion of 218 articles (see Fig. 1). We 
excluded publications that do not relate to energy economics, such as 
those that focus on physics or artificial intelligence methods, or only 
consider one specific technology without analyzing the full energy sys
tem. The remaining articles were then analyzed in depth, resulting in a 
further exclusion of 106 studies that did not focus on energy system 
models. Furthermore, 52 of the remaining articles did not rely on an 
optimization model or did not provide sufficient information about the 
optimization problem, as it made up only a small part of the study. This 
mainly occurred in studies that utilized large integrated assessment 
models (IAMs), which combine various simplified models. Articles 
containing IAMs were excluded from the methodological review 
approach. Instead, these articles were qualitatively considered in the 
discussion to provide the reader with important information for 
parameterizing and constraining endogenous technological learning. In 
addition, 15 articles were excluded in which technological progress was 
only considered in an exogenous manner. Therefore, the remaining 
database included 31 articles, which were complemented by eleven 
articles from a manual search and a backward citation search. This 
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review methodology allows for a structured identification of relevant 
literature and helps to provide an unbiased overview of the research 
field. However, it is still possible that individual relevant articles are 
missed due to limitations in search terms or database coverage. The 
database analyzed in this study consisted of 42 articles that focused on 
endogenous technological learning in energy system optimization 
models. The articles were then analyzed using an all-encompassing 
concept matrix that contained the following categories:

2.1. Implementation of the experience curve

In this category, the studies were analyzed with regard to their 
implementation of the experience curve. Therefore, the optimization 
method (e.g., mix-integer linear programming, non-linear program
ming) and objective criteria within the optimizations were reviewed. 
Based on this information, we investigated if the authors used either a 
single- or multi-factor experience curve model and which explanatory 
variables they used. Furthermore, we examined how the experience 
curve model was implemented (e.g., piecewise linearization of the cost 
function or iterative approach) and whether the commissioning of 
technologies featuring endogenous technological learning was con
strained. Finally, we assessed whether the authors analyzed the impact 
of including endogenous technological learning on the optimization 
results and whether they accounted for uncertainties in relation to the 
learning parameters.

2.2. Considered technologies

Next, we analyzed which technologies the authors considered in 
their studies and which technologies they applied endogenous techno
logical learning to. Additionally, we also stated what demand sectors the 
studies focus on and whether the models incorporated a spatially 
resolved electricity or district heating grid.

2.3. Model complexity and reduction methods

The final category for this review is the complexity associated with 
the utilized models. To obtain an estimate of the complexity associated 
with the models considered herein, the models were evaluated with 
respect to the following three complexity dimensions: 

• Number of technologies: Connected to the Considered technologies 
category, we determined how many technologies were represented 
in the studies and for how many of which endogenous technological 
learning was applied.

• Spatial resolution: In this dimension, we examined the spatial 
resolution and how many nodes were used in the optimization.

• Temporal resolution: The temporal resolution can be represented 
by two different variables. On the one hand, it is dependent on the 
number of investment periods, which can be derived from the length 
of an investment period and the considered time horizon. On the 
other hand, these investment periods are often divided into time 
steps to model the operation during that investment period. Addi
tionally, we analyzed which foresight horizon and method was used 
in order to calculate how many total system states (#investment 
periods × #time steps) were simultaneously considered per optimi
zation run.

Additionally, we examined whether, and if so which, complexity 
reduction methods were used by the authors. This could be any type of 
aggregation (e.g., temporal aggregation by using typical days) or 
decomposition methods (e.g., benders decomposition) to lower the 
model complexity and reduce the computational effort or computing 
time for solving the optimization models [14].

During the review process, we contacted all corresponding authors to 
ensure the correct interpretation of their study.

3. Results

3.1. Implementation of the experience curve

For the implementation of technological learning, the vast majority 
of the analyzed studies (88%) used a single factor learning function in 
combination with the installed capacity of a component as an explana
tory variable. In contrast, Xu et al. [29], Miketa & Schrattenholzer [30], 
and Barreto & Kypreos [31] used a two-factor experience curve and thus 
also considered R&D expenditures a second explanatory variable. The 
authors employed non-linear models to account for this effect. De Feber 
et al. [24]. also incorporated this effect but, instead of using R&D 
spending as a second explanatory variable, they exogenously set specific 
R&D expenses and adjusted the learning rate accordingly. In addition to 
the experience-based endogenous learning effects, Straus et al. [32]. also 
considered an exogenously-modeled cost reduction to account for 
learning effects outside of their modeled region.

As shown in the section “Fundamentals of endogenous technological 
learning” in the Supplemental Information, cost functions of capacities 
which are subject to technological learning are concave, i.e., their 
marginal cost and thus their steepness decrease with deployment. 
Minimization problems with concave objective functions are non- 
convex which means that they can contain multiple local optima, even 
if their constraints are fully linear.

The direct implementation of this relationship allows modelers to 
most accurately represent all mathematical relationships of technolog
ical learning in a non-linear optimization model. However, the existence 
of multiple minima makes this kind of non-linear optimization problems 
(NLPs), illustrated in Fig. 2A, generally hard to solve. Simple optimi
zation algorithms start somewhere within the feasible space and likely 
end up in a local optimum without proving that no better optimum 
exists. Thus, the direct solution of NLPs requires specialized solvers 
using multiple initialization and optimization algorithms such as parti
cle swarm or genetic algorithms to guarantee a global optimum. These 
approaches are associated with high computing times, which, in turn, 
limit the maximum model size that can be solved. The representation of 
technological learning in a non-linear model is often found in models 
with low temporal resolution that focus more on capacity expansion 
than on plant operation [33], or in models that consider multifactorial 
learning [30].

Fig. 1. Literature identification and exclusion. 
The figure shows different inclusion and exclusion criteria. The blue bar depicts 
the number of remaining publications. The red and green bars indicate the 
number of excluded and included publications, respectively.
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The optimizations using piecewise linearization, shown in Fig. 2B, 
replace the concave curves by a number of linear curve segments. 
Generally, they rely on additional binary variables that define which 
segment to choose. These additional binary variables turn the models 
into mixed-integer linear problems (MILPs). The first advantage of these 
models used by most articles are the broad availability of MILP solvers 
like Gurobi. Secondly, they can be solved to global optimality, e.g., using 
standard solving algorithms like the branch-and-bound algorithm. 
However, due to the use of piecewise segments to represent the learning 
curve, this method is only an approximation of the original learning 
curve and therefore does not solve with full accuracy. In addition, 
similar to NLPs, MILPs are known to be NP-hard as well, resulting in an 
exponential increase in solution time for larger models [34]. On the 
other hand, the popularity of MILPs, the resulting strong competition 
and high performance of state-of-the-art solvers, partially compensate 
for this drawback. The use of MILPs combined with a piecewise linear
ization of the learning curve is a common approach to represent tech
nological learning, as it provides a global optimum for comparatively 
low computational effort.

Lastly, an iterative linearization of the concave objective function is 
the least computationally expensive approach and requires minimal 
adaptation of a linear optimization program (LP) neglecting techno
logical learning. In this approach, an assumption about the capacity 
development of each learning component is made prior to the first 
optimization. This development is then translated into the cost devel
opment of the respective component using the corresponding learning 
curve which serves as an input for the first optimization. In each itera
tion, the cost curve is linearized at the abscissa of the previous optimi
zation run by updating the cost gradient and y-intercept of the linearized 
cost curve. The iteration, which is shown schematically in Fig. 2C, ter
minates after a convergence criterion is met. This method is fast and 
simple to implement, but it is neither mathematically exact, because the 
quality of the solution depends on the convergence criterion, nor does it 
guarantee global optimality. This means that the final model solution 
depends on the initial assumptions about the expected capacities and 
cost gradients. For that reason, multiple initializations should be 
considered to ensure that the found local optima are close to the global 
optimum; an approach that is also well-parallelizable. This method is 
particularly useful for large linear energy system optimization models 
where the use of NLP or MILP solvers would lead to computational 
infeasibility. A limited number of learning technologies thereby may 
prevent the occurrence of local optima.

While the use NLPs offers the most accurate implementation of 
technological learning into the models, this also drastically limits the 
feasible model size and features, as the computational resources 
required to solve this type of problem are much higher as for other 
implementations. NLPs are used by 25% of the analyzed studies. In 
contrast, iterative LPs need much lower computational power and thus 
offer the possibility for larger and more comprehensive models. But 
these models do not guarantee to solve for global optimality and are 
therefore only useful for a very limited number of use cases. Within the 
analyzed database 10% of the studies utilized LPs. Lastly, MILPs offer a 
good compromise between the required computational resources and 
the provided accuracy and therefore are used by the majority (60%) of 
the analyzed studies. The remaining 5% of the studies either used a 
different optimization approach (e.g., dynamic programming), or 
defined models based on a combination of different optimization ap
proaches. While the various models differ relatively strongly with 
respect to the optimization method used, there were only minor differ
ences in their objective functions: all studies considered the energy 
system costs an objective value and differences could only be found in 
the specific formulations. For example, some articles added a carbon 
price by associating costs with the emission of greenhouse gases [35]. 
Other studies also included research and development costs in their 
objective function [30,31] or optimized the resulting cost of a particular 
product or energy carrier (e.g., the price per ton of steel or levelized cost 
of electricity) [29,36].

When fully linear optimization was applied in the analyzed articles, 
the investment periods were either optimized one at a time (myopic) and 
the learning effects considered between periods [37], or the investment 
periods were optimized all at once (perfect foresight) and the learning 
effects were applied in an iterative process until the learning converged 
to the optimization result [38,39]. In contrast, Rathi & Zhang [40] used 
a discretization of the experience curves that leaves only discrete 
commissioning possibilities to the optimization model, but allowed the 
authors to use uncertain learning rates.

A major drawback of energy system models that incorporate 
endogenous technological learning is that they favor the rapid ramp-up 
of a technology during the early optimization years. This frequently 
results in overestimated commissioning, which cannot be met consid
ering resource availability or build-up times. Hence, 43% of the 
analyzed studies incorporated constraints to limit the capacity expan
sion of certain technologies featuring endogenous technological 
learning. This was done by either limiting the total capacity or the in
dividual commissioning for each investment period and technology 
(growth rate). When applied, these growth rates are often binding in 
many models and thus determine the solution space. Historically, 
however, assumed possible growth rates have often underestimated the 
real growth [41].

Furthermore, only 55% of the studies present an analysis of how 
technological learning affects the model results. Most of these observed 
a fairly substantial influence of endogenous technological learning [38,
42–44]. The observed effects include substantial changes in the energy 
supply [43,45,46,135,136], deviating commissioning dates [19,42], and 
increased competitiveness of technologies that incorporate technolog
ical learning [47,48]. Additionally, Barreto & Kypreos [31,49] found 
that the technologies incorporating endogenous technological learning 
tend to behave in an "all-or-nothing" manner. This means that the cor
responding technology either gets built with its capacity expansion 
maximum or is not present in the energy system at all (the "lock-out" 
effect).

Another relevant aspect is the consideration of uncertainty, which 
only 35% of the articles considered. The authors either conducted 
sensitivity analyses [30–32,35,38,50,51], examined different scenarios 
[47,48,52,53], or used Monte Carlo simulations [24,33,132] to account 
for the uncertainties associated with the learning rates used. Addition
ally, Mattson [54] and Rathi & Zhang [40] performed a more in-depth 
analysis by introducing a stochastic optimization problem to account 

Fig. 2. Different optimization approaches for technological learning. 
The figure shows the three most frequently used optimization approaches while 
including endogenous technological learning in energy system optimization 
models. This is done by presenting the total costs of a technology as a function 
of its cumulative capacity. 
(A) Non-linear programming (NLP). 
(B) Mixed integer linear programming (MILP) with piecewise linearization. 
(C) Fully linear programming (LP) with an iterative approach, depicted by the 
numbered points. The slope of each red line represents the per unit costs for the 
corresponding iteration. The numbered points indicate the resulting cumulative 
capacity and total cost, which then determine the per unit costs of the next 
calculation (tangent of cost-capacity curve). The error for each iteration (de
viation to cost-capacity curve) is depicted by the corresponding ε.
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for different possible learning rates.

3.2. Considered technologies

Due to computational constraints, not all considered technologies 
were modeled with endogenous technological learning, leading to 
studies that mostly focused on specific technologies. PV and onshore 
wind were modeled with endogenous investment costs in almost all of 
the studies and showed no trend with respect to the year of publication 
(see Fig. 3 and Table 1). Offshore wind turbines were only considered in 
15 newer studies with a mean publication year of 2015, of which 14 
incorporated the investment costs endogenously. Only the study by 
Anandarajah et al. [47]. provides investment costs for offshore wind 
turbines exogenously, as they focus on the transportation sector. Most 
studies consider baseload renewables such as hydro, geothermal, or 
biomass power plants and conventional generation such as nuclear, coal, 
oil, or gas power plants. However, these technologies were only modeled 
with endogenous technological learning in a minority of the studies, 
unlike intermittent renewable energy technologies.

Other technologies such as Integrated Gasification Combined Cycle 
Coal (Coal IGCC) or Combined Cycle Gas Turbine (Gas CCGT) power 
plants, which were an area of focus during the beginning of the twenty- 
first century, were modeled with endogenous technological learning at 
that time. However, as these technologies emit greenhouse gases, they 
have rarely been modeled with endogenous technological learning in 
recent studies, which frequently focus on carbon-neutral energy sys
tems. The focus therefore shifted away from these technologies, and they 
were primarily modeled with exogenous cost curves.

Recent publications have shifted from focusing on specific sectors or 
technologies to models that include multiple integrated sectors with a 
wide variety of technologies (see Table 1). Power-to-X technologies such 
as electrolysis, heat pumps, methanation, or Fischer–Tropsch plants are 

therefore more present in recent studies that address the need for 
greenhouse gas-neutral energy systems [47,55,56]. Furthermore, only a 
limited number of studies include short- or long-term energy storage 
options. The reason for this is the low temporal resolution within the 
individual investment periods in most of them, which means that the 
interactions of storage mediums in the energy system cannot be 
adequately represented. This especially holds true for short term storage 
technologies, which are only represented in models that use an hourly 
temporal resolution [38,50,57]. The only study that considers 
short-term storage with endogenous technological learning is that of 
Heuberger et al. (stationary battery storage) [50]. Long-term storage, 
such as pumped hydro or hydrogen, is only considered in models with 
three to twelve time slices per investment period [39,45,48,51,58], 
allowing the models to account for seasonality. Some of these studies 
endogenously consider components of long-term storage technologies 
by applying endogenous technological learning to renewable production 
technologies for hydrogen [38,51,53,57]. Road transport technologies 
are represented in ten different studies, of which six modeled them with 
endogenous technological learning [24,46,47,55,59,60] for analyzing 
the macroeconomic effects of technological learning in the transport 
sector. Lastly, carbon capture and storage (CCS) technologies are 
modeled in twelve articles, with eight of them modeling the investment 
costs of CCS technologies endogenously [43,46,50,61–65]. Our review 
results, presented in this section and depicted in Table 1, indicate that 
the analyzed studies used a wide range of methods to implement tech
nological progress, focused on different technologies, and used different 
learning parameters. The articles also utilized completely different 
temporal and spatial scales, which makes a meaningful comparison of 
model results impossible.

Fig. 3. Trends in technologies with and without endogenous technological learning (ETL) over time. 
Number of publications, including specific technologies, with or without ETL. Publication years are shown on the x-axis, whereas the number of studies including a 
technology and the total number of publications for that year are shown on the y-axis of the corresponding subplot. A moving average of three years is used for the 
publication year.
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Table 1 
Considered technology classes, model formulations, and foresight horizons.
The table presents an overview of the analyzed studies. The corresponding studies are referenced in the first column. In the second column the different technologies 
were grouped into eight different categories, which are described in the legend. The color of the corresponding icon indicates whether all, some, or none of the 
technologies in that group are modeled with endogenous technological learning. If an icon is not present for a particular study, it means that none of the technologies in 
the group was addressed in that study. The third column reveals which models used growth rates to constrain technology diffusion. The fourth column shows the used 
model formulation, which is an indicator of how many investment periods were considered per optimization run (all investment periods: perfect foresight; all with 
optimal substructure: dynamic programming; multiple but not all: rolling horizon; one: myopic). Finally, the fifth column displays the time period used in the model 
(light blue) and the years in which investments in technologies and measures were possible (dark blue).
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3.3. Complexity and reduction methods

This review investigates the three dimensions of the spatial and 
temporal resolutions, as well as the number of technologies to estimate 
the complexity of the analyzed models, as endogenous technological 
learning may lead to unfeasible computation times. The first dimension 
(x-axis in Fig. 4) is the total number of time slices optimized in a single 
optimization run. For models with perfect foresight, this is the product 
of the number of investment periods and the number of time steps within 
these periods. This provides the optimization model with all available 
information from the outset and enables it to "know" the effects of 
technological progress. Based on this information, the model can 
calculate the most cost-effective design of the energy system for the 
entire observation period. Table 1 shows that this approach is used by 
the vast majority (36 out of 42) of the studies analyzed. To lower the 
total number of time slices optimized in a single optimization run, most 
models using perfect foresight consider fewer, but longer, investment 
periods to represent the optimization horizon. Most of these models 
consider between four and ten investment periods, representing five–ten 
years [43,49,65].

For myopic optimization models that were applied in three of the 
analyzed models [37,39,51], the number of time slices optimized in a 
single optimization run is equal to the number of time steps considered 
for one investment decision, as only one investment period is modeled 
per optimization run. In this approach, the model contains no infor
mation about subsequent investment periods, but only about the current 
one, and is therefore not able to consider the effects of technological 
progress within the optimization. Instead, technological learning is 
applied between optimization runs. Compared to perfect foresight 
models, this usually only leads to local optima. However, since the 
myopic approach only optimizes one of the investment periods at a time, 
the temporal complexity of these models is generally lower than that of 
models that use perfect foresight. This provides computational advan
tages over the perfect foresight approach and allows more investment 
periods to be considered in the model [66]. Two publications [42,45] 
used the rolling horizon approach, which, like the myopic one, divides 
the observation period into multiple optimization runs. However, 
instead of considering only one investment period per optimization run, 
multiple periods are considered. Thus, the considered investment 

periods overlap between the different optimizations and the foresight 
horizon changes. Our analysis shows that the use of myopic or rolling 
horizon approaches simplifies the computational demands of these 
models, but also inadequately accounts for long-term technological 
progress. In our view this underestimation of learning effects can lead to 
flawed system designs.

Furthermore, two studies used a dynamic programming approach 
[51,67], which is a frequently applied method in economic problems 
such as sequential (investment) decision problems or growth models 
[68–70]. Dynamic programming is applicable to optimization problems 
with an optimal substructure, which means that their solutions can be 
obtained by optimal solutions of their sub-problems. In sequential 
problems such as consecutive investment decisions, these models are 
solved via backwards induction, i.e., the final state of the decision 
problem defines the optimal solution of the last but one period, and the 
last but one state in turn defines the optimal solution of the last but two 
period, etc. As the investment periods can be recursively optimized, a 
computationally efficient "myopic" sequential optimization yields a 
global optimum, i.e., the same result as a joint and mathematically 
cumbersome perfect foresight optimization. While Xu et al. [67]. 
consider a pure investment model, Seck et al. [51]. couple their in
vestment model, which is based on an earlier publication by Bakken 
et al. [71], with a linear bottom-up TIMES-type optimization model, and 
one for hydrogen import costs. As the authors point out, the complex 
interaction of operating costs and spatially resolved investment de
cisions would disrupt the optimal substructure in the investment model 
and thus the soft linkage between the models would only allow for the 
finding of local optima. At the same time, the limitation of dynamic 
programming models to very coarse technology representations and 
system operations is the main reason why this approach remains rela
tively unpopular amongst large-scale energy system models, as it re
sembles a top-down method.

To reduce the complexity based on the temporal resolution, some 
models attempt to identify representative time slices, e.g., one for each 
season and day/ night [52,56]. Others apply more accurate algorithms 
called time series aggregation to cluster the hourly time series of the 
components into typical periods and segments. As is shown in Fig. 4, 
Heuberger et al. [50] and Zeyen et al. [38] used this method to reduce 
the total number of time slices optimized in a single run by a factor of 

Fig. 4. Number of spatial nodes, time slices and technologies. 
The complexity graph contains only studies that used a MILP. The gray arrows indicate complexity reduction through time series aggregation (TSA). The ‘Number of 
Time Slices’ refers to the number of time slices which were optimized within one optimization. For models which consider multiple investment periods per opti
mization run (perfect foresight, rolling horizon) the number of time steps per investment period therefore is multiplied by the number of investment periods per 
optimization run.
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17.4 [50] and 36.5 [38], respectively. Both studies used the k-means 
approach for clustering time series to ensure the computational feasi
bility of their model. Heuberger et al. [50]. therefore used 11 and Zeyen 
et al. [38] 10 typical days, each containing 24 time slices, to represent 
the hourly time series. Meanwhile, Heuberger et al. [50] reported that 
the model’s runtime decreased from 43 h to less than 5 min, while the 
objective values deviated by 2.5%. The technology-specific capacity 
deployment deviated by less than 8%.

The second complexity dimension (y-axis in Fig. 4) was estimated by 
the number of spatial nodes used in the models. Typically, multiple 
spatial nodes are used to account for regional effects and to represent the 
transfer of energy carriers between different regions, e.g., in electrical 
grids. As technological learning is considered a global phenomenon, 
most of the models analyzed in this review attempt to represent global, 
continental, or national energy systems. Modelers are thus confronted 
with a conflict between a good representation of regional effects and 
manageable model complexity. Of the analyzed studies, 23 focused on 
global and 15 on continental or national energy systems. These studies 
used an average of around seven spatial nodes for the global models and 
only around two for continental/national models. Only one of the 
analyzed studies focused on a region smaller than national, representing 
the Java–Bali energy system [48], in a single-node model.

The technological learning effects in publications that account for 
different regional nodes within their models are either defined as global 
or local learning [43,52,55]. Global learning thereby allows all regions 
to contribute and profit in the same way from the learning effects [43,
55]. In contrast, some publications have chosen to use a local learning 
approach that models technological progress for each spatial node 
individually and possibly with a local learning rate, resulting in different 
investment costs for each region [49,72,73,133]. This enables the 
models to depict spillover effects among regions, but also considerably 
increases the complexity of the models, as all required variables and 
constraints must be introduced for each region. Publications focusing on 
non-global energy systems typically accounted for global technological 
progress in two different ways [32]. They either approximated the 
global learning progress and applied it as exogenous cost reduction [51] 
or they assumed that the global capacity expansion would proportion
ally follow the modeled commissioning [35,57]. In some publications, 
both concepts were used depending on the technology [38] or scenario 
[50].

Finally, the third dimension (bubble size in Fig. 4) refers to the 
number of different technologies represented with or without endoge
nous technological learning in the models. Whenever the investment 
costs of a technology are considered via a piecewise linear function, this 
greatly increases the complexity of the model through the introduction 
of binary variables.It therefore is advisable to distinguish how many 
technologies are considered with or without endogenous technological 
learning. Some studies model the investment costs for nearly all 
considered technologies endogenously. For example, Hayward et al. 
[62] model technological learning endogenously for 16 of 20 considered 
technologies. Other studies only model cost reduction endogenously for 
certain technologies that are the focus of the study in order to reduce 
complexity [47]. In addition, it is also possible to implement clusters of 
technologies that are related to each other [134]. This accounts for 
spillover effects between different technologies and reduces the 
complexity, as different technologies can profit from the same knowl
edge stock. The corresponding (binary) variables must be introduced 
only once per cluster instead of per technology. This method is used by 
De Feber et al. [24], who assign all technologies to multiple clusters, 
which allows the authors to represent 60 different technologies while 
only introducing the binary optimization variables for 10 different 
technology clusters.

Most studies that include technological learning massively limit the 
temporal and spatial resolutions to ensure computational feasibility (see 
Fig. 4, lower left quadrant). An exception to this can be found in Felling 
et al. [57], who use an hourly resolution for three different years 

representing their investment periods, resulting in a total of 26,280 time 
slices, while still considering five spatial nodes. The authors are able to 
include this high number of time slices and spatial nodes by applying 
Benders decomposition and including binding constraints on the growth 
rates of the learning technologies. This method divides the optimization 
problem into one master- and several sub-problems, which can be solved 
in parallel, taking advantage of the resources of a high-performance 
computer and resulting in faster solution times. The authors show that 
this method is particularly suitable for models that utilize high temporal 
resolutions and piecewise linearization and are therefore defined as 
MILPs. In contrast, no time savings were observed for LP models and for 
those with low temporal resolutions. For further information, see the 
extensive reviews of application cases for decomposition in energy 
system optimization [74], on non-convex generalized Benders de
compositions to mixed-integer nonlinear problems [75], and articles on 
the application of Benders decomposition to bottom-up energy system 
optimization models [76–81] for either enabling solvability or out
performing closed optimizations.

In addition to the presented methods of complexity reduction such as 
spatial aggregation, time series aggregation, the clustering of learning 
technologies, and decomposition approaches, there are also other 
techniques for ensuring the computational feasibility of energy system 
optimization models with endogenous technological learning. For 
example, Heuberger et al. [50] used a relaxed version of their model by 
transforming all integer variables into continuous variables, which can 
take any value between zero and one. Thereby, the model no longer 
represents the integer characteristics and so does not necessarily result 
in an optimal or even feasible solution. This method was reported to only 
result in a negligible change in the objective value [82]. However, the 
original model used by Heuberger et al. [50] was intractable with 
non-relaxed variables and the authors were unable to report the corre
sponding change in the objective value.

The model complexity and thereby its computation time can also be 
decreased by the implementation method of technological learning. For 
example, Kim et al. [39] and Zeyen et al. [38] utilized the iterative 
linearization approach presented above. They observed much faster 
computation times but also an overestimation of the total annualized 
costs by about 9% and delayed investments in emerging technologies. It 
should therefore be noted that this method does not necessarily yield a 
global optimum and that it depends heavily on the initial parameteri
zation of the exogenous cost curves, especially if multiple learning 
technologies are included.

Fig. 4 reveals that more recent studies tend to integrate greater 
complexity within their models. These articles are located near the top 
right corner of the figure and include more technologies while preser
ving a high temporal and spatial resolution. Increasing computational 
power and improved solver performance enable more recent models to 
maintain feasibility [83]. In addition, novel methods such as stabilized 
Benders decomposition are emerging that could be applied to techno
logical learning, allowing for increased model complexity [84].

4. Discussion

Despite the integration of endogenous technological learning in 
various studies, some still inadequately address the computational 
complexity associated with high spatial and temporal resolutions. This 
review highlights the need for a more sophisticated approach to model 
complexity, which we argue is crucial for the accurate forecasting of 
future energy system designs. In the following section we therefore 
critically discuss the before presented results and identify issues that 
have been inadequately addressed in the current literature and require 
further investigation.

4.1. Data availability and quality for parameters and constraints

The utilization of high-quality input data for parameters and 
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constraints is a prerequisite for the successful implementation of 
endogenous technological learning. This applies for example for 
(regional) learning rates, costs, historically installed capacity (knowl
edge stock), potential growth rates, and floor costs. However, deter
mining these data can be challenging, as they may need to be estimated 
(e.g. growth rates, floor costs) or determined statistically (e.g. learning 
rates, costs). Modelers are therefore often confronted with the chal
lenging task of using empirically grounded data. This especially holds 
true for technologies which are up to the current date not economically 
feasible (i.e. carbon capture technologies, deep geothermal power 
plants, or power to X technologies) [85]. The uncertainty associated 
with these technologies is reasonably high and therefore needs to be 
considered carefully. The presented results indicate that 65% of articles 
did not indicate that they considered this uncertainty. The remaining 
studies applied different methods such as sensitivity analysis or Monte 
Carlo simulations to account for this issue. Apart from this, a broader 
availability of data could significantly increase the validity of the 
models, as the used parameters would be much more comparable, and 
modelers would not have to rely on individual data sources [86]. 
Modelers might also be able to address this uncertainty by using con
servative predictions, apply sensitivity analyses, use the latest available 
data, and update their models accordingly to strengthen their results 
[87]. The use of exogenous cost curves also introduces significant un
certainties and might lead to an underestimation of a technologýs po
tential. In these cases, a smaller and more focused model could be key to 
explore the potential of technologies and their role in future energy 
systems [41].

Many of the analyzed studies added additional constraints to the 
implementation of technological learning. The most frequently used 
constraint is the application of growth rates, which limit capacity 
expansion either based on absolute values or depending on the 
commissioning in prior periods. While this approach is widely used and 
validated in previous literature [88,89], there are also publications that 
reveal the dangers of careless use of growth rates [41,90]. In the past, 
the potential of solar energy was frequently underestimated. For 
example, PV deployment exceeded the expected maximal growth rates, 
and models failed to predict the role of solar PV within the energy sys
tem [90]. Whenever these constraints are utilized, modelers should 
carefully consider if and how growth rates are affected by additional 
factors such as advancements in skills, supply chains, or technology 
legitimacy which may allow for higher growth rates. Modelers should 
also check whether the growth rates can also be formulated based on the 
overall system design and not solely on the capacity development of one 
specific technology. For example, the commissioning of 10 GW of solar 
PV might be better achievable for a large country with good infra
structure and experience with other energy technologies than for a 
smaller country with less infrastructure and experience [63,89,91].

The same also holds true for the use of floor costs. Floor costs can be 
used to limit the marginal cost of a technology to a certain minimal value 
in order to avoid unrealistic low costs. Recent publications however 
show, that costs for solar PV have regularly fall below assumed floor 
costs [41]. For models using MILP formulations floor costs are endoge
nously following from their implementation. During the piecewise 
linearization the marginal costs a set to a fixed value within each 
segment. The marginal costs of the last segment therefore can be 
considered as the floor costs, as the implementation does not allow to 
build capacities beyond the last segment. As the definition of a bound is 
a necessary implication of this methodology, modelers should carefully 
select those bounds.

If modelers impose overly strict constraints on their models, they 
may inadvertently eliminate viable system designs, resulting in an 
insufficient exploration of the feasible solution space. Especially, 
methods that increase the mathematical stability of models, such as 
diminishing returns to scale, should only be used if they represent sta
tistically proven correlations (e.g. diminishing returns to scale should 
only be used for resource-based industries) [92] and not for 

mathematical convenience. Modelers therefore should be careful when 
constraining the technological progress of technologies, especially when 
they are relying on expert elicitations in order to not omit feasible areas 
of the solution space that might include renewable energy system de
signs which are cheaper than the current system design [93]. This also 
applies for exogenous learning progress which is defined not by means of 
installed capacity but by the time a technology is available in a market 
(Moorés Law) [94]. Recent publications show that elicitations often fail 
to predict the future development of technologies [41,95]. Especially 
when constraints on growth rates or floor costs are binding, modelers 
should carefully consider the constraint parameters and perform sensi
tivity analysis in order to strengthen their results.

4.2. Consideration of parameters beyond costs

All analyzed studies consider the technology costs as the dependent 
variable. However, the basic concept of technological learning could 
also be applied to other technological properties. To the best of the 
authors’ knowledge, this has not yet been applied in energy system 
optimization models. Amongst other factors, efficiency, lifetime, space 
requirements, and operational flexibility are affected by technological 
progress and should therefore be included in future research projects.

For efficiency, Weiss et al. [96] conducted a review and defined the 
learning rates for the specific energy consumption of several large 
household appliances such as washing machines and dishwashers. This 
learning process could be incorporated into energy system models using 
one of the approaches mentioned in Fig. 2. An increasing lifetime as a 
result of technological progress can be observed, for example, for lith
ium–ion batteries [97,98]. Furthermore, improvements in space re
quirements can be the result of new use cases for certain technologies. 
For example, the concept of agri-PV allows for the dual use of land for 
agriculture and electricity generation, thus reducing the required space 
[99]. Reduced space requirements can also occur as a side effect of other 
improvements, e.g., in efficiency, leading to a decrease in the area 
needed to produce the same amount of energy [100].

In addition, technological learning can also affect other technology- 
specific parameters. For example, as smart meters become more wide
spread, the system will increasingly be able to use demand-side man
agement to increase the operational flexibility of various components. 
An increasing share of electric cars with vehicle-to-grid capability also 
contributes to increased operational flexibility by allowing storage ca
pacity to be used for grid stabilization.

Finally, technological diffusion is not solely dependent on the 
manufacturing and installation of technical components, which is dis
cussed throughout this paper, but also on numerous aspects of a greater 
socio-technical system [88,101]. These aspects, include various social 
effects such as consumer behavior, social acceptance, environmental 
pressure, or institutional learning [13,102]. While institutional learning 
might result in better regulations and thus enable a faster deployment of 
certain technologies, environmental pressure may lead to higher in
vestments in research and development, which could lead to further 
technological improvements [13]. However, some other social factors 
may not be beneficial for the deployment of emerging technologies. For 
instance, the large-scale deployment of wind turbines might negatively 
affect the social acceptance and diffusion rates of the technology as 
house values in the proximity decrease [103] Furthermore, consumer 
behavior is especially important in sectors of the energy system where 
investment decisions are made by individuals rather than governmental 
institutions or companies. This applies for example to the passenger car 
sector, where the decision to invest in a specific type of vehicle is highly 
individual and not based solely on cost-effective considerations. 
Capturing these effects in energy system models is particularly chal
lenging as consumer behavior depends on various uncertain factors and 
concepts [104].

To represent technological diffusion more realistically, researchers 
might include some of the presented social learning aspects into their 
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analysis. However, as this is a computational and methodological 
challenge, modelers should carefully evaluate which concepts should be 
integrated to support policy makers in making informed decisions and 
effectively addressing challenges and opportunities [86].

4.3. Future research on emerging technologies

The analyzed literature of this review has predominantly explored 
the roles of wind and solar. Both are now well-established technologies 
that significantly contribute to the electricity supply in many countries 
[105,106]. As the EU sets political targets for net-zero emissions across 
all sectors [107], it becomes vital to expand the research scope beyond 
the power sector, to include emerging technologies in various domains. 
This future research is crucial for two reasons: firstly, it enables an 
analysis of the competition between established and emerging tech
nologies. Secondly, it provides insights into the cost-optimal timeline of 
investments. For instance, addressing emissions in sectors that are 
challenging to decarbonize may require strategies such as direct air 
capture (DAC), bioenergy with carbon capture and storage (BECCS), or 
the use of fossil fuels in conjunction with carbon capture. Currently, 
these technologies are immature and their future costs and viability are 
uncertain [108–110]. As they compete with each other but also with 
other technologies that reduce emissions, it is important to model the 
respective technology’s progress in an energy system model with a 
detailed technical representation [13,111]. Further studies are also 
needed regarding the question of whether low-emission hydrogen for 
sectors that are difficult to decarbonize will be provided by blue or green 
hydrogen [112]. In addition, there is growing interest in technologies 
with dispatchable energy and low emissions, such as enhanced 
geothermal systems [113], small modular nuclear reactors [114], and 
Allam Cycles with carbon capture and storage [115] for power and heat 
production. Similarly, advances in storage technologies, both in terms of 
new contenders and the evolving learning potential of existing ones, can 
significantly influence future energy system designs [116]. Future 
research on all these technologies in energy system models can not only 
provide information about a cost-optimal system design but can also 
offer political guidance, e.g., steering subsidies towards promising 
technological pathways.

4.4. Systematic complexity assessment

Mixed integer linear optimization problems combined with piece
wise linear experience curves are the most commonly used approach to 
account for endogenous technological learning in energy system models. 
Our results show that 60% of the analyzed studies used this method in 
their model. Reasons for their popularity are that they are less compu
tationally expensive than NLP approaches and, in contrast to iterative LP 
approaches, they still yield global optima. However, compared to con
ventional LPs, these models still have a massively increased model 
complexity, which is highly dependent on the specific implementation. 
Therefore, the trade-off between computational complexity and accu
racy should be carefully evaluated. While the temporal and spatial res
olutions in particular have been extensively studied in the literature 
[117,118], a far smaller number of publications has dealt with the 
cross-effects of varying model resolutions [119–122].

All of these studies come to the conclusion that feature resolutions 
must be carefully chosen given a limited complexity budget, i.e., a 
maximum mathematical model complexity for solving energy system 
models in a reasonable amount of time [123] and the decreasing mar
ginal accuracy gains for higher resolutions, which, in turn, dispropor
tionately increases complexity [122]. Simply put, it is not recommended 
to focus on a particularly high resolution of a single model feature such 
as temporal resolution while completely neglecting other model features 
– first, because they are likely relevant for an accurate solution, and 
second, because they may directly affect the accuracy of the 
highly-resolved model feature as well. For example, spatially aggregated 

demand profiles are smoother than spatially highly-resolved ones and 
may therefore seem appealing to an additional strong temporal aggre
gation, which is, however, misleading as the modeling errors made by 
spatial and temporal aggregation affect each other.

As discussed earlier, the studies on endogenous technological 
learning have thus far employed temporal aggregation techniques [50] 
and a cross-comparison of iterative LP and MILP solution strategies [38,
39]. However, a large-scale sensitivity analysis of the optimal accuracy 
and runtime trade-off for varying numbers of investment periods, 
technologies considering endogenous technological learning, and line
arized experience curve segments, remains a wide field of future 
research.

Lastly, as MILPs are solved by branch-and-bound routines that allow 
for aggressive pruning if good feasible starting solutions are provided. 
Future research could analyze the potential of warm starts (i.e. 
providing the solver with a feasible and, in the best case, near optimal 
starting point) on computational speedups for MILP-based energy sys
tem models considering endogenous technological learning. Although a 
number of application case-specific approaches for non-linear cost 
curves exist in the literature [124,125], their application to endogenous 
technological learning curves would open up a new field for these ap
proaches. For example, local optima derived from an iterative linearized 
approach could serve as the upper bounds to a MILP formulation, which 
could help discard certain transformation pathways directly from the 
beginning.

4.5. Endogenous technological learning in integrated assessment models

Integrated Assessment Models (IAMs) commonly have a global 
coverage and frequently integrate technological learning into their 
frameworks. A wide range of articles have applied these frameworks to 
address the technological learning effects of one or more technologies 
[41,87,89,91]. However, this review focuses on bottom-up energy sys
tem models which often neglect the dynamics of technological learning, 
as this is difficult to integrate due to high spatial and temporal resolu
tions and the large diversity of considered technologies. Some chal
lenges also apply to IAMs, such as too strict expansion rates [126], too 
high floor costs [41], and the absence of a comprehensive database for 
parameters [127]. The incorporation of technological learning into the 
optimization of IAMs gives rise to the same issues of increased 
complexity and uncertainty that have been previously discussed in the 
context of technological learning. Consequently, the measures presented 
earlier to reduce model complexity and address the associated uncer
tainty can also be applied to these models.

Furthermore, various literature reviews have summarized diverse 
implementations of technological learning in IAMs [128–131]. These 
reviews indicate that, unlike the studies analyzed in this review that 
mostly employed single-factor learning, IAMs are more likely to incor
porate a wider range of technological learning [128–131]. A proportion 
of the studies on IAMs consider learning by searching, which links 
technological progress to research and development expenditures [130]. 
However, IAMs may not always be based on an optimization problem 
[130,131]. Instead, they can utilize various other methods (e.g. general 
equilibrium model, life cycle analysis, agent-based modeling). Incor
porating these methods for modeling technological progress is often less 
computationally challenging and does not necessarily increase the 
modeĺs complexity.

5. Conclusions

The accurate representation of technological learning in energy 
system models is of crucial importance for cost-optimized investment 
strategies. Previous predictions of technology costs and expansions have 
often failed because many energy system models neglect endogenous 
learning. Our study provides a comprehensive overview of the existing 
literature on endogenous technological learning in energy system 
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models by performing a structured literature review. We present 
commonly used methods and concepts and provide practical informa
tion on how to implement technological learning by discussing the ad
vantages and disadvantages of these methods. We also discuss several 
additional issues that are often neglected in the current literature but 
may be key to successful implementation. Our study highlights the 
crucial role of endogenous technological learning, especially for novel 
technologies such as carbon capture and storage, electrolysis, photo
voltaics, and wind power, which often exhibit significant learning ef
fects. Due to its computational complexity, the incorporation of 
technological learning requires a careful selection of appropriate 
methods to reduce model runtimes at constant accuracies. When using 
growth rates or floor costs, modelers must carefully consider how these 
parameters were determined to not omit feasible solution spaces. If 
growth rates are used, we recommend formulating them as relative 
growth rates (e.g., allowing only a doubling of capacity per period, but 
not setting a maximum capacity increase), explicitly stating whether 
they are binding, and, if so, performing a sensitivity analysis. Modelers 
might also use relative growth rates based on the already installed ca
pacities or gross domestic product.

The inclusion of endogenous technological learning promises a more 
sophisticated understanding of the dynamics of energy systems and 
paves the way for more accurate predictions and informed decisions. 
Our overview presented here, together with the suggestions for 
complexity reduction, will enable researchers to integrate this crucial 
component into models and thus improve their validity and accuracy.

In the phase of energy system transformation, new technologies will 
play a crucial role, as they provide us with the opportunity to meet our 
energy needs without relying on fossil fuels. Having energy system 
models that accurately incorporate the technological learning of these 
components is key for cost-optimal policy and investment strategies.
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