001     1032476
005     20250310131240.0
024 7 _ |a 10.1021/acs.chemmater.4c02281
|2 doi
024 7 _ |a 0897-4756
|2 ISSN
024 7 _ |a 1520-5002
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-06269
|2 datacite_doi
024 7 _ |a WOS:001348337400001
|2 WOS
037 _ _ |a FZJ-2024-06269
082 _ _ |a 540
100 1 _ |a Hartel, Johannes
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Investigating the Influence of Transition Metal Substitution in Lithium Argyrodites on Structure, Transport, and Solid-State Battery Performance
260 _ _ |a Washington, DC
|c 2024
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1739437091_25030
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a FESTBATT funded by the Bundesministerium für Bildung und Forschung (BMBF; project 03XP0430F), Deutsche Forschungsgemeinschaft under project number 459785385
520 _ _ |a Lithium argyrodites have gained significant attention as candidates for solid electrolytes in solid-state batteries due to their superior ionic conductivities and favorable mechanical properties. However, during charging, oxidative decomposition reactions occur at the interface between the solid electrolyte and cathode active material, which impede cell performance. In this study, transition metal substitution of the solid electrolyte is investigated with the intention of tuning the composition of the cathode electrolyte interphase (CEI) and thereby improving the cycling performance. Hence, the $Li_{5.5–2x}Zn_xPS_{4.5}Cl_{1.5}$ (0 ≤ x ≤ 0.15) and $Li_{6–2x}Zn_xPS_5Br$ (0 ≤ x ≤ 0.15) substitution series are investigated to elucidate how substitution affects structure, $Li^+$ transport, and the performance of the materials as catholytes in solid-state batteries. Corefinement of the neutron and powder X-ray diffraction data unveils the occupation of $Li^+$ positions by $Zn^{2+}$. This leads to blocking of $Li^+$ transport pathways within the $Li^+$ cages causing a decrease of ionic conductivities along with increasing activation energies for $Li^+$ transport. By using a combination of cycling experiments, impedance spectroscopy and X-ray photoelectron spectroscopy, the composition of the CEI and the state-of-charge dependence of the CEI growth when using $Li_{5.5–2x}Zn_xPS_{4.5}Cl_{1.5}$|NCM-83 composites was investigated in half-cells, revealing that $Zn^{2+}$ substitution leads to faster decomposition kinetics and affects the CEI composition. Overall, this work explores the influence of Li+ substitution by $Zn^{2+}$ on structure and transport in lithium argyrodites and the potential of transition metal substitutions as means to tune the kinetics of CEI growth, the CEI composition, and thereby cell performance.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Banik, Ananya
|0 0000-0003-0455-3051
|b 1
700 1 _ |a Ali, Md Yusuf
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Helm, Bianca
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Strotmann, Kyra
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Faka, Vasiliki
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Maus, Oliver
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Li, Cheng
|0 P:(DE-Juel1)172659
|b 7
700 1 _ |a Wiggers, Hartmut
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Zeier, Wolfgang
|0 P:(DE-Juel1)184735
|b 9
|e Corresponding author
|u fzj
773 _ _ |a 10.1021/acs.chemmater.4c02281
|g Vol. 36, no. 21, p. 10731 - 10745
|0 PERI:(DE-600)1500399-1
|n 21
|p 10731 - 10745
|t Chemistry of materials
|v 36
|y 2024
|x 0897-4756
856 4 _ |u https://juser.fz-juelich.de/record/1032476/files/revised_manuscript.pdf
|y Published on 2024-11-02. Available in OpenAccess from 2025-11-02.
909 C O |o oai:juser.fz-juelich.de:1032476
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)184735
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM MATER : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEM MATER : 2022
|d 2024-12-16
920 1 _ |0 I:(DE-Juel1)IMD-4-20141217
|k IMD-4
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-4-20141217
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21