001032477 001__ 1032477
001032477 005__ 20250310131237.0
001032477 0247_ $$2doi$$a10.1021/jacs.4c12034
001032477 0247_ $$2ISSN$$a0002-7863
001032477 0247_ $$2ISSN$$a1520-5126
001032477 0247_ $$2ISSN$$a1943-2984
001032477 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06270
001032477 0247_ $$2pmid$$a39537339
001032477 0247_ $$2WOS$$aWOS:001354941200001
001032477 037__ $$aFZJ-2024-06270
001032477 082__ $$a540
001032477 1001_ $$0P:(DE-HGF)0$$aBöger, Thorben$$b0$$eFirst author
001032477 245__ $$aOn the Thermal Conductivity and Local Lattice Dynamical Properties of NASICON Solid Electrolytes
001032477 260__ $$aWashington, DC$$bACS Publications$$c2024
001032477 3367_ $$2DRIVER$$aarticle
001032477 3367_ $$2DataCite$$aOutput Types/Journal article
001032477 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1739437348_25030
001032477 3367_ $$2BibTeX$$aARTICLE
001032477 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001032477 3367_ $$00$$2EndNote$$aJournal Article
001032477 500__ $$aFunded by the European Union (ERC, DIONISOS, 101123802), Deutsche Forschungsgemeinschaft (DFG) under project number 459785385
001032477 520__ $$aThe recent development of solid-state batteries brings them closer to commercialization and raises the need for heat management. The NASICON material class ($Na_{1+x}Zr_2P_xSi_{3–x}O_{12}$ with 0 ≤ x ≤ 3) is one of the most promising families of solid electrolytes for sodium solid-state batteries. While extensive research has been conducted to improve the ionic conductivity of this material class, knowledge of thermal conductivity is scarce. At the same time, the material’s ability to dissipate heat is expected to play a pivotal role in determining efficiency and safety, both on a battery pack and local component level. Dissipation of heat, which was, for instance, generated during battery operation, is important to keep the battery at its optimal operating temperature and avoid accelerated degradation of battery materials at interfaces. In this study, the thermal conductivity of $NaZr_2P_3O_{12}$ and $Na_4Zr_2Si_3O_{12}$ is investigated in a wide temperature range from 2 to 773 K accompanied by in-depth lattice dynamical characterizations to understand underlying mechanisms and the striking difference in their low-temperature thermal conductivity. Consistently low thermal conductivities are observed, which can be explained by the strong suppression of propagating phonon transport through the structural complexity and the intrinsic anharmonicity of NASICONs. The associated low-frequency sodium ion vibrations lead to the emergence of local random-walk heat transport contributions via so-called diffusons. In addition, the importance of lattice dynamics in the discussion of ionic transport as well as the relevance of bonding characteristics typical for mobile ions on thermal transport, is highlighted.
001032477 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001032477 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001032477 7001_ $$0P:(DE-HGF)0$$aBernges, Tim$$b1
001032477 7001_ $$0P:(DE-HGF)0$$aAgne, Matthias T.$$b2
001032477 7001_ $$00000-0002-5168-9253$$aCanepa, Pieremanuele$$b3
001032477 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b4$$ufzj
001032477 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang G.$$b5$$eCorresponding author
001032477 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/jacs.4c12034$$gp. jacs.4c12034$$n47$$p32678 - 32688$$tJournal of the American Chemical Society$$v146$$x0002-7863$$y2024
001032477 8564_ $$uhttps://juser.fz-juelich.de/record/1032477/files/NASICON_Phonons_revised_Manuscript.pdf$$yOpenAccess
001032477 8564_ $$uhttps://juser.fz-juelich.de/record/1032477/files/b%C3%B6ger-et-al-2024-on-the-thermal-conductivity-and-local-lattice-dynamical-properties-of-nasicon-solid-electrolytes.pdf$$yOpenAccess
001032477 909CO $$ooai:juser.fz-juelich.de:1032477$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001032477 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b4$$kFZJ
001032477 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b5$$kFZJ
001032477 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001032477 9141_ $$y2024
001032477 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
001032477 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
001032477 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-13
001032477 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-13
001032477 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-13
001032477 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bJ AM CHEM SOC : 2022$$d2024-12-13
001032477 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CHEM SOC : 2022$$d2024-12-13
001032477 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-13
001032477 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
001032477 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2024-12-13
001032477 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-13
001032477 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
001032477 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001032477 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-13
001032477 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2024-12-13
001032477 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
001032477 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001032477 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-13$$wger
001032477 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
001032477 9201_ $$0I:(DE-Juel1)IMD-4-20141217$$kIMD-4$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001032477 980__ $$ajournal
001032477 980__ $$aVDB
001032477 980__ $$aUNRESTRICTED
001032477 980__ $$aI:(DE-Juel1)IMD-4-20141217
001032477 9801_ $$aFullTexts