001     1032484
005     20250203133219.0
024 7 _ |a 10.1038/s43246-024-00635-9
|2 doi
024 7 _ |a 10.34734/FZJ-2024-06277
|2 datacite_doi
024 7 _ |a WOS:001355396900001
|2 WOS
037 _ _ |a FZJ-2024-06277
082 _ _ |a 600
100 1 _ |a Sato, Manabu
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Ideal spin-orbit-free Dirac semimetal and diverse topological transitions in Y8CoIn3 family
260 _ _ |a London
|c 2024
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1732626970_28772
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Topological semimetals, known for their intriguing properties arising from band degeneracies, have garnered significant attention. However, the discovery of a material realization and the detailed characterization of spinless Dirac semimetals have not yet been accomplished. Here, we propose from first-principles calculations that the RE8CoX3 group (RE = rare earth elements, X = Al, Ga, or In) contains ideal spinless Dirac semimetals whose Fermi surfaces are fourfold degenerate band-crossing points (without including spin degeneracy). Despite the lack of space inversion symmetry in these materials, Dirac points are formed on the rotation-symmetry axis due to accidental degeneracies of two bands corresponding to different 2-dimensional irreducible representations of the C6v group. We also investigate, through first-principles calculations and effective model analysis, various phase transitions caused by lattice distortion or elemental substitutions from the Dirac semimetal phase to distinct topological semimetallic phases such as nonmagnetic linked-nodal-line and Weyl semimetals (characterized by the second Stiefel–Whitney class) and ferromagnetic Weyl semimetals.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bouaziz, Juba
|0 P:(DE-Juel1)157840
|b 1
700 1 _ |a Sumita, Shuntaro
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kobayashi, Shingo
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tateishi, Ikuma
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 5
700 1 _ |a Furusaki, Akira
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Hirayama, Motoaki
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1038/s43246-024-00635-9
|g Vol. 5, no. 1, p. 253
|0 PERI:(DE-600)3008524-X
|n 1
|p 253
|t Communications materials
|v 5
|y 2024
|x 2662-4443
856 4 _ |u https://juser.fz-juelich.de/record/1032484/files/s43246-024-00635-9.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1032484
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Department of Applied Physics, The University of Tokyo, Bunkyo, Japan
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157840
910 1 _ |a Department of Basic Science, The University of Tokyo, Meguro, Japan
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Komaba Institute for Science, The University of Tokyo, Meguro, Japan
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RIKEN Center for Emergent Matter Science, Wako, Japan
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a RIKEN Center for Emergent Matter Science, Wako, Japan
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130548
910 1 _ |a Condensed Matter Theory Laboratory, RIKEN CPR, Wako, Japan
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a RIKEN Center for Emergent Matter Science, Wako, Japan
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Department of Applied Physics, The University of Tokyo, Bunkyo, Japan
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a RIKEN Center for Emergent Matter Science, Wako, Japan
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMMUN MATER : 2022
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:36:48Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:36:48Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:36:48Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-19
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-19
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b COMMUN MATER : 2022
|d 2024-12-19
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21