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Ideal spin-orbit-free Dirac semimetal
and diverse topological transitions in
Y8CoIn3 family
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Stefan Blügel 2, Akira Furusaki 5,6 & Motoaki Hirayama 1,6

Topological semimetals, known for their intriguing properties arising from band degeneracies, have
garnered significant attention. However, the discovery of a material realization and the detailed
characterization of spinlessDirac semimetals havenot yet beenaccomplished.Here,wepropose from
first-principles calculations that the RE8CoX3 group (RE = rare earth elements, X = Al, Ga, or In)
contains ideal spinless Dirac semimetals whose Fermi surfaces are fourfold degenerate band-
crossing points (without including spin degeneracy). Despite the lack of space inversion symmetry in
thesematerials, Diracpoints are formedon the rotation-symmetry axis due to accidental degeneracies
of two bands corresponding to different 2-dimensional irreducible representations of the C6v group.
We also investigate, through first-principles calculations and effective model analysis, various phase
transitions caused by lattice distortion or elemental substitutions from the Dirac semimetal phase to
distinct topological semimetallic phases such as nonmagnetic linked-nodal-line andWeyl semimetals
(characterized by the second Stiefel–Whitney class) and ferromagnetic Weyl semimetals.

Topological semimetals are a fascinating group of materials with degen-
eracies between valence and conduction bands that exhibit intriguing
properties in the bulk and at the surface, e.g., due to interference effects
between the electronic states around the degeneracy points1. There exist
various types of topological semimetals in real materials including Weyl2–6,
Dirac7–14, and nodal-line semimetals15–22, for spinless and spinful systems.
Here spinless systems refer to electron systemswithout spin-orbit couplings
(SOC), where the spin degrees of freedom can be omitted due to the spin
degeneracy, while spinful systems have the SOC, which breaks SU(2) spin
rotation symmetry. Although all real materials have finite SOC, it is rea-
sonable to first discuss the topology as spinless systems and then examine
the effect of the SOC when studying materials with weak SOC. This is
because there are topological invariants that take nontrivial values only in
systems without the SOC, such as the quantized Berry phase protected by a
combination of space inversion and time reversal symmetry23–25. Hereafter
we will disregard the spin degrees of freedom when counting the degree of
degeneracy in spinless systems.

The recent development of the representation theory of electronic
energy bands, such as symmetry-based indicators26,27 and topological
quantum chemistry28, has enabled the exhaustive search over crystal

databases for topological materials29–34. Nevertheless, the comprehensive
classification anddetailed characterizationof topological semimetals are still
lacking. For example, no material realization of spinless Dirac semimetals
with a quadruple degenerate point between the valence and conduction
bands has been discovered to the best of our knowledge. The difference
between the spinless Dirac semimetal and other well-known topological
semimetalswith quadruple degeneracy is given in SupplementaryNote 1. In
fact, the irreducible representations (irreps) of valence bands at high sym-
metry points alone cannot tell uswhether thematerial in question is an ideal
semimetal without superfluous Fermi surfaces of finite area, while they can
determine the presence of nodes and their degree of degeneracy29–35.
Moreover, for spinless systems, there is currently no guiding principle for
the realization of band inversion, which is essential for the design of topo-
logical insulators and topological semimetals, in contrast to the spinful
systems,where the band inversion can be achieved by strong SOC.Thus, the
study of spinless topologicalmaterials lags behind that of spinful ones. In the
search for material realizations of the symmetry-protected Dirac semi-
metals, the representation theory of space groups is essential. In spinful
systems, there are two distinct classes of Dirac semimetals1,36,37. In one class
of Dirac semimetals, a pair of Dirac points is formed due to an accidental
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band crossing of two different 2-dimensional irreps on a high-symmetry
line, as seen in Na3Bi

8,9 and Cd3As2
10–14. In the second class of Dirac semi-

metals with nonsymmorphic symmetry, such as β-BiO2
7, a Dirac point

appears as a 4-dimensional irrep at a high-symmetry point on the boundary
of the Brillouin zone (BZ). These two classes of Dirac semimetals are also
expected to exist in spinless systems, and the space groups that can realize
each class are listed in ref. 38. We note that the study of spinful Dirac
semimetals is carried out using double-valued representations, while the
studyof spinlessDirac semimetals is basedon single-valued representations.
This corresponds to the fact that a spinless Dirac point does not consist of
the spin degrees of freedom, but only of the orbital (pseudospin) degrees of
freedom. Inotherwords, in spinlessDirac semimetals, eight bands including
the spin degrees of freedom form the degeneracy, which clearly distin-
guishes spinless Dirac semimetals from already well-studied spinful Dirac
semimetals.

In this paper, we study the first class of spinless Dirac semimetals and
their material realization.We focus on the space groups with C6v symmetry
that accommodates two 2-dimensional irreps along a high symmetry line in
theBZ. Inaddition to the space groupconsiderations,weutilize the chemical
bonding perspective to design ideal Dirac semimetals. We choose elements
with similar electronegativity that form covalent bonds, which we expect to
result in the reduction of the density of states (DOS) at the Fermi energy.
Our study reveals thatmaterials within theRE8CoX3 group (RE = rare earth
elements,X =Al, Ga, or In) exhibit the spinless Dirac semimetal phase with
nontrivial topological properties. Thesematerials haveC6v symmetry on the
high symmetry line in the BZ. We will begin by discussing these materials’
crystal structure and their symmetry. TakingY8CoIn3 as an example,wewill
present the bulk electronic structure and the characterization of its topology,
and describe the surface states and their correspondence to the bulk topo-
logical invariant.Next,wewill show thediverse topological phase transitions
caused by symmetry reductions in the target materials, from the Dirac
semimetallic phase to nodal-line and Weyl semimetallic phases character-
ized by the second Stiefel–Whitney (SW) class. Finally, we will consider the
substitution of rare earth elements to introduce strong SOC and discuss
possible magnetic properties.

Results
Electronic band structure
Among the ternary compoundsRE8CoX3 (RE= rare earth elements,X =Al,
Ga, or In), the experimentally synthesized compounds all show a hexagonal
crystal structurewith the nonsymmorphic space groupP63mc (no. 186)39–41.
This structure lacks space inversion symmetry and has a polarization along
the c-axis. Figure 1 shows the crystal structure of Y8CoIn3

40, where the
measured lattice constants are a = b = 10.3678Å and c = 7.0069Å. The
crystal structure is three-dimensional and the composition is primarily
made up of Y elements. The space group has a sixfold screw symmetry
around the z-axis fC6zj00 1

2g, amirror symmetrywith respect to the yz-plane
{Mx∣000}, and a glide symmetry with respect to the zx-plane fMyj00 1

2g,
where the z direction is taken to be along the c-axis. As a result, the little co-
group C6v is formed along the kz-axis (Γ-A line in the BZ).

Figure 2a shows the electronic band structure of Y8CoIn3 calculated in
the absence of the SOC, with the corresponding bulk BZ shown in Fig. 2b.
Clearly, Y8CoIn3 is an ideal semimetal with the band crossing along the Γ-A

line. The Fermi surface of this semimetal consists of twoFermi points on the
kz-axis that are related by time-reversal symmetry. This band structure is
well reproduced by the Korringa–Kohn–Rostoker (KKR) method (see
Supplementary Note 2). The DOS shown in Fig. 2c suggests that the bands
near the Fermi level originate mainly from the Y 4d orbitals, the Co 3d
orbitals, and the In 5p orbitals. We note that the Y atoms occupy four
Wyckoff positions, and all of them contribute almost equally to the DOS.
Even though Y8CoIn3 is composed ofmetallic elements, covalent bonds are
formed between the Y 4d, Co 3d, and In 5p orbitals42, resulting in a semi-
metallic DOS. In addition to these atomic orbital states, the bands in the
immediate vicinity of the Fermi level also originate from three interstitial
states near the Co atoms (Fig. 2d), which are related to each other by the
threefold rotational symmetry around the Co atoms.

Along the Γ-A line, there is a little co-group C6v. This group has two
distinct 2-dimensional irreps, Δ5 and Δ6, which are distinguished by
eigenvalues of the screw symmetry around the z-axis. This situation is
similar to a benzene molecule with C6v, where the highest occupied mole-
cular orbital and lowest unoccupied molecular orbital have double degen-
eracy of different irreps. By contrast, C3v and C4v symmetries cannot have
two distinct types of 2-dimensional irreps in spinless systems. The two
bands that intersect along the Γ-A line belong to the two different
2-dimensional irrepsΔ5 andΔ6 (Fig. 2a). These bands cannot hybridize, and
their crossing points are fourfold degenerateDirac points (without counting
the spin degeneracy). When the SOC is turned on, the system becomes a
spinful Dirac semimetal. The SOC’s magnitude at the Dirac point can be
adjusted from 20meV to 75meV through the elemental substitutions (see
“Spinful Dirac semimetal” Section and Supplementary Note 3).

Figure 2e shows the 3-dimensional picture of the band structure
around the Dirac point in the kx = 0 plane, calculated without the SOC.We
see that the banddispersion around theDirac point is linear in all directions.
As already mentioned, both the valence and the conduction bands are
doubly degenerate on the kz-axis (Γ-A line), which is indicated by the black
lines in Fig. 2e. These degeneracies are lifted away from the kz-axis. To see
this, we construct a low-energy 4 × 4 k ⋅ p Hamiltonian up to the second
order in k around the Dirac point. We find that the two-fold degenerate
valence and conduction bands split into four bands, except along the nodal
lines marked in white in Fig. 2e, where either valence or conduction band is
two-fold degenerate; we will discuss these nodal lines in more detail below.
These features are different from the band structure of spinful Dirac
semimetalswith spatial inversion symmetry, such asNa3Bi,where the bands
are Kramers degenerate throughout the BZ.

Next, we discuss the topological invariants that characterize the bulk
states of Y8CoIn3. The Zak phase along the x-axis

θðky; kzÞ ¼ �i
Xocc:
n

I
dkx unðkÞ

�
∣
∂

∂kx
∣unðkÞ

�
ð1Þ

is quantized to either 0 or π (mod 2π) due to themirror symmetry about the
yz-plane. This means that the Wannier functions are located at mirror-
symmetric positions.We find that the nontrivial topology of the bulk states
of Y8CoIn3 is characterized by the Zak phase θ(0, kz) calculated in the ky = 0
plane. The ky = 0 plane is invariant under the glide operationwith respect to
the zx-plane, and the wavefunctions in this plane can be chosen to be

Fig. 1 | Crystal structure of Y8CoIn3. The blue,
gray, and gold balls represent Y, Co, and In atoms,
respectively.
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eigenstates of the glide operation. We classify the occupied bands in the
ky = 0 plane into two sectors according to the sign of the eigenvalues of the
glide operation, and calculate the Zak phases for each sector. As shown in
Fig. 2f, the Zak phases change from 0 to π at the Dirac point in both sectors.
Note that theZakphases calculated fromall occupiedbandshaveno jumpof
π at the Dirac point, since the sum of the Zak phases for each sector is 0
(mod 2π) at all kz.

As shown in Fig. 2e, there are lines of degeneracies between two
valence bands andbetween twoconduction bands, which are connected to
the Dirac point. These nodal lines are found not only on the kz-axis but
also on the mirror or glide planes. Figure 3 shows the color maps of the
energy difference between the two highest valence bands and between the
two lowest conduction bands of Y8CoIn3. The calculations are performed
in themirror invariant plane kx = 0 and the glide invariant plane ky = 0.All
four panels show the degeneracy of the bands forming 2-dimensional
irreps on the kz-axis.While no additional band degeneracy is found in the
ky = 0 plane (Fig. 3c, d), the two highest valence bands (Fig. 3a) and two
lowest conduction bands (Fig. 3b) ofY8CoIn3 havenodal lines in the kx = 0
plane extending from the Dirac point (kDz ’ 0:237 Å−1) to the diagonal
directions, kz > k

D
z in a and kz < k

D
z in b.

These properties are explained using the effective k ⋅ p Hamiltonian
expanded around the Dirac point up to the second order in k. The effective
Hamiltonian has the form

HðkÞ ¼ c1kzΓ0;0 þ c2kzΓ3;0 þ c3ðkxΓ2;0 � kyΓ1;2Þ
þ c4ðkxΓ1;0 þ kyΓ2;2Þ þ c5ðk2x þ k2yÞΓ0;0
þ c6k

2
zΓ0;0 þ c7½ðk2x � k2yÞΓ3;3 � 2kxkyΓ0;1�

þ c8ðkxkzΓ2;0 � kykzΓ1;2Þ þ c9ðkxkzΓ1;0 þ kykzΓ2;2Þ
þ c10ðk2x þ k2yÞΓ3;0 þ c11k

2
zΓ3;0

þ c12½ðk2x � k2yÞΓ0;3 � 2kxkyΓ3;1�;

ð2Þ

where the Γ matrices are the direct products of the Pauli matrices σi
(i = 1, 2, 3) and a 2 × 2 unit matrix σ0, i.e., Γi,j = σi⊗ σj. This Hamiltonian

has a sixfold rotational symmetry around the z-axis
DðC6zÞHðkÞDðC6zÞy ¼ HðC6zkÞ ½DðC6zÞ ¼ �ðΓ3;0 þ i

ffiffiffi
3

p
Γ0;2Þ=2� , and a

mirror symmetry about the zx-plane DðMyÞHðkÞDðMyÞy ¼ HðMykÞ
[D(My) = Γ0,3], hence it has C6v symmetry. Note that a previous study38

has also systematically constructed the k ⋅ p theory in linear order in k,
whereas our Hamiltonian in Eq. (2) takes into account the second-order
terms that are crucial for the following discussions. The band structure
obtained by first-principles calculations is well fitted in the neighborhood
of the Dirac point by the Hamiltonian in Eq. (2), and the obtained
parameters are presented in Supplementary Note 4. The eigenvalues of
H(k) in the kx = 0 plane are

Eð0; ky; kzÞ ¼ ½c5 þ ð�1Þs1c7�k2y þ ðc1 þ c6kzÞkz
þ ð�1Þs2 ðc3 þ c8kzÞ2k2y þ ðc4 þ c9kzÞ2k2y

n

þ c2kz þ c10k
2
y þ ð�1Þs1 c12k2y þ c11k

2
z

h i2�1=2

;

ð3Þ

where s1, s2∈ {0, 1}. The valence bands (s2 = 1) are degenerate at ky ≠ 0,
when the condition

c7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc23 þ c24Þk2y þ c22k

2
z

q
¼ c2c12kz ð4Þ

is satisfied in the leading order of k. By squaring both sides we obtain

c27ðc23 þ c24Þk2y ¼ c22ðc212 � c27Þk2z : ð5Þ

Therefore, when ∣c12∣ > ∣c7∣, the valence bands are degenerate along the
straight lines kz∝ ± ky emanating from theDirac point.Note that, according
to Eq. (4), the degeneracies occur only in the part of the lines described by
Eq. (5) that satisfies c2c7c12kz > 0. Similarly, when ∣c12∣>∣c7∣, the conduction
bands are degenerate in the part of the lines represented by Eq. (5) that
satisfies c2c7c12kz < 0. On the other hand, when ∣c7∣>∣c12∣, the valence bands

Fig. 2 | The electronic structure of Y8CoIn3 calculated without the SOC. a The
electronic band structure of Y8CoIn3 calculated by the generalized gradient
approximation (GGA). The irreps of the two bands forming the Dirac point in the
Γ-A line are shown. The energy is measured from the Fermi level. bThe bulk BZ and
the projected surface BZ for the (1000) surface. c The total and partial density of
states (PDOS) calculated with the Wannier functions. d The interstitial Wannier

functions near the Co atoms. The differently colored surfaces represent isosurfaces
of opposite signs. e The 3-dimensional band structure around the Dirac point cal-
culated in the kx = 0 plane. The black (white) lines represent degeneracies between
the valence bands or between the conduction bands on (off) the kz-axis. f The Zak
phases along the x-axis for each glide sector. The dashed line represents the coor-
dinate of the Dirac point.
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and the conduction bands on the ky = 0 plane are degenerate in the part of
the lines represented by

c212ðc23 þ c24Þk2x ¼ c22ðc27 � c212Þk2z ð6Þ

that satisfies c2c7c12kz > 0 and c2c7c12kz < 0, respectively. We note that
0 < c2 < c7 < c12 in Y8CoIn3. From the above discussion, we conclude that in
the spinless Dirac semimetal phase protected by C6v symmetry, both the
valence bands and the conduction bands are degenerate along the straight
lines passing through theDirac point extending to the opposite directions to
each other on one of the two equivalentmirror invariant planes determined
by the relative magnitude of c7 and c12.

Surface states
We calculate the surface states for the (1000) surface of Y8CoIn3, using
the surface termination shown in Fig. 4a and the surface BZ shown in
Fig 2b. As shown in Fig. 4b, two nontrivial surface bands emerge from
the projection of the bulk Dirac point. The absence or presence of the
nontrivial surface bands in the �Γ-�Z line corresponds to the Zak phase
values of 0 or π, respectively. Also, the number of nontrivial surface
bands corresponds to the number of glide sectors for which the Zak
phase is π. This correspondence between the Zak phases for each sector
and the nontrivial surface bands are reproduced by the 4 × 4 tight-
binding model with the C6v point group symmetry and time-reversal
symmetry, as described in Supplementary Note 5.

The crystal maintains the glide symmetry with respect to the zx-plane
when the surface is in this direction. The �Z-�U line is invariant up to the
reciprocal lattice vector under the product of the glide operation fMyj00 1

2g

and the time reversal operation Θ. The product fMyj00 1
2gΘ is an anti-

unitary operator and ðfMyj00 1
2gΘÞ

2 is −1 when ckz = π; therefore the
Kramers-like degeneracy occurs on the �Z-�U line. This explains the degen-
eracy of the two midgap surface states along the �Z-�U line.

The second SW class
From this section onwards, we investigate phase transitions exhibited by the
spinless Dirac semimetal phase, which is located at phase boundaries of
various topological phases. First, we explore phase transitions in the spinless
systems. By applying uniaxial pressure to Y8CoIn3, we can transform it into
a multi-band nodal-line or Weyl semimetallic phase characterized by the
second SW class.

In the space group P63mc, the kz = 0 plane is invariant under the
product of the twofold screw operation fC2zj00 1

2g and the time reversal
operation Θ. Since fC2zj00 1

2gΘ is an anti-unitary operator and satisfies
ðfC2zj00 1

2gΘÞ
2 ¼ þ1 in the kz = 0 plane, we can adopt the real gauge for

the wavefunctions in the kz = 0 plane. Recalling that Y8CoIn3 has a
finite energy gap throughout the kz = 0 plane, the Hamiltonian on this
plane is topologically characterized by aZ2 invariant called the second
SW class25,43–47. The second SW class w2 can be obtained by the Wilson
loop method46–50. Figure 5a shows the Wilson loop spectrum of
Y8CoIn3 calculated in the kz = 0 plane, where the integral path of the
Wilson loop is along the kx direction at fixed ky. The spectrum has one
linear crossing at π, indicating w2 = 1 in this plane. On the other hand,
in the kz = π/c plane, ðfC2zj00 1

2gΘÞ
2 is −1 instead of +1. In this case,

the second homotopy group of the corresponding classifying space is
the trivial group and gapped Hamiltonians have no topological
distinction25.

Fig. 3 | Color maps of the energy difference with logarithmic scale. The energy
difference between the two topmost valence bands and between the two bottommost
conduction bands of Y8CoIn3 on the mirror invariant plane kx = 0 are shown in (a)

and (b), respectively. The energy difference between the two topmost valence bands
and between the two bottommost conduction bands on the glide invariant plane
ky = 0 are shown in (c) and (d), respectively.
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In fact, when the system has bothC2z (or screw) andΘ symmetries,w2

can be determined from the C2z eigenvalues as follows
43,46:

ð�1Þw2 ¼
Y4
i¼1

ð�1ÞbN�
occðΓiÞ=2c; ð7Þ

where {Γi} are the C2z invariant points on the plane wherew2 is evaluated,
N�

occðΓiÞ is the number of occupied bands with negative C2z eigenvalues at
Γi, and ⌊ ⋅ ⌋ represents the floor function. From this formula, it can be
seen that for symmorphic systems with C2z and Θ symmetries, when the
w2 indices in the kz = 0 and kz = π planes are different, two band inver-
sions occur between bands with different C2z eigenvalues as shown in
Fig. 5b, which is called a double band inversion. In this case, four bands
form a gap-closing object in 0 < kz < π, which mediates the two planes
with different w2. In Y8CoIn3, the two 2-dimensional irreps Δ5 and Δ6,

which are distinguished by the twofold screw eigenvalues, intersect on
the kz-axis, similarly to the band structure in Fig. 5b. Although w2 cannot
be defined on the kz = π plane in Y8CoIn3, the Dirac point can be
considered to act as an intermediary between the kz = 0 plane hosting the
nontrivial w2 and the kz = π plane having the trivial topology.

The C6v symmetry is actually not required for the definition of w2 and
its calculation from the C2z eigenvalues. We thus investigate the topological
phase transitions ofY8CoIn3 under uniaxial strains that breakC6v symmetry
butmaintainC2 symmetry. Compressing the Y8CoIn3 lattice by 5% in the x
direction results in space groupCmc21 (no. 36), and its little co-group on the
kz-axis is C2v. Figure 5c shows the band structure calculated on the kz-axis,
where the 2-dimensional irreps are split due to the symmetry reduction.
Since the twofold screweigenvalues of the occupied bands in the kz = 0plane
remain unchanged,w2 is invariant. However, in this system, a nodal line on
the mirror invariant plane kx = 0 mediates the kz = 0 and kz = π planes

Fig. 5 | The second SW class and the topological phase transitions of Y8CoIn3.
a The Wilson loop spectrum of Y8CoIn3 calculated in the kz = 0 plane. The integral
path of the Wilson loop is along the kx direction at fixed ky. b Schematic band
structure of C2z and Θ symmetric systems with different second SW classes in the
kz = 0 and kz = π planes. The colors of the bands, red and blue, correspond to the C2z

eigenvalue values, + and − , respectively. The atomic orbital-like bases and their
mirror eigenvalues (eigenvalues forMx and forMy in this order) are also written for
the case ofC2v symmetry. In this case, the degeneracies between a red band and a blue

band occur on either the kx = 0 plane or the ky = 0 plane. cThe band structure on the
kz-axis of Y8CoIn3 compressed by 5% in the x direction. d The nodal structure of
Y8CoIn3 compressed by 5% in the x direction. The nodal line between the valence
and conduction bands is drawn in purple, and the nodal line between the two highest
valence bands (lowest conduction bands) is drawn in blue (red). The gray planes
represent the kx = 0 and ky = 0 planes. e The 3-dimensional band structure in the
kx = 0 plane of Y8CoIn3 compressed by 5% in the direction making an angle of π/4
from the x-axis. The gray plane shows the kz-E plane at ky = 0.

Fig. 4 | Surface states in Y8CoIn3. a The surface
termination used in the calculation. b The surface
states for the (1000) surface.
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instead of the Dirac point. Furthermore, in this system, nodal lines between
the twohighest valence bands andbetween the two lowest conductionbands
lie on the glide invariant plane ky = 0 and pass inside the nodal line between
the valence and conduction bands as shown in Fig. 5d. The fact that the
nodal lines appear on the two different mirror-invariant planes can be
understood from the symmetry of the bands. For example, a band with the
dxyorbital symmetry can intersect a bandwith thepxorbital symmetry in the
ky = 0 plane, whereas it can intersect a band with the py orbital symmetry in
the kx = 0 plane (see Fig. 5b). Notably, wavefunctions with positive (nega-
tive) C2 eigenvalues have the same (different) eigenvalues for the two
orthogonal mirror reflections.

We analyze this system using the k ⋅ p Hamiltonian in Eq. (2). The
k-independent perturbation that breaksC6v but preservesC2v symmetry has
the form c13Γ0,3 + c14Γ3,3. In the following, we investigate the nodal lines
near k = 0 in the leading order of k, assuming that the perturbation is
sufficiently small. First, let c13 = 0 for simplicity. Then, the eigenvalueson the
kx = 0 plane are

Eð0; ky; kzÞ ¼ � ð�1Þs1c14 þ ½c5 þ ð�1Þs1 c7�k2y þ ðc1 þ c6kzÞkz
þ ð�1Þs2 ðc3 þ c8kzÞ2k2y þ ðc4 þ c9kzÞ2k2y

n

þ c2kz þ c10k
2
y þ ð�1Þs1 c12k2y þ c11k

2
z

h i2�1=2

;

ð8Þ

where s1, s2∈ {0, 1}, and the top valence and bottom conduction bands are
degenerate along the curve defined by

ðc23 þ c24 þ 2c7c14Þk2y þ c22k
2
z ¼ c214: ð9Þ

Since the perturbation c14 is assumed to be small, this represents an ellipse
around k = 0. We note that this nodal ring cannot be gapped out by tuning
c14. Suppose we start from the nodal-line semimetal phase and change c14
through0.As c14 approaches 0, the size of thenodal ringdecreases.At c14 = 0
the nodal ring shrinks to the Dirac point, but when c14 becomes finite after
the sign reversal, it grows into a nodal ring again.

Similarly, on the ky = 0 plane, the two valence bands and also the two
conduction bands are degenerate along

½c10 ± sgnðc14Þc12�k2x þ c2kz ¼ 0; ð10Þ

where ± corresponds to the valence and conduction bands, respectively, and
sgnð�Þ denotes the sign function. The degenerate k points form two para-
bolas with the vertex at k = 0 and thread the nodal line defined by Eq. (9).
These features coincide with those of nodal lines withZ2 monopole charge
inPT-symmetric systems23,46,wherePT is theproduct of space inversionand
time reversal operators. However, it should be noted that our system does
not have space inversion symmetry, but has C2v symmetry instead. In the
general case with c13≠ 0, the planes where the nodal lines emerge switch
between the kx = 0 and ky = 0 planes depending on the relativemagnitude of
c13 and c14, and the two connected parabolas of Eq. (10) are turned into two
branches of a hyperbola as shown in Fig. 5d. The details of the calculations
are presented in SupplementaryNote 6. Note that, depending on the sign of
the perturbation parameters, the degeneracies between the valence bands
and between the conduction bands represented by Eqs. (5) and (6) can
remain in the plane, but shift enough from the kz-axis tomove outside of the
nodal ring in Eq. (9).

When the system is compressed in the direction with an angle of
π/4 from the x-axis, the space group transforms intoP21 (no. 4), and its little
co-group on the kz-axis becomes C2. Under this distortion, the kz = 0 plane
still preserves the nontrivial w2. However, the gap-closing object bridging
the kz = 0 and kz = π planes becomes a pair of Weyl points with opposite
chirality (Fig. 5e). This phenomenon is typical of Dirac semimetal phases
with broken spatial inversion symmetry and has been discussed in previous

studies51–54. The analytical argument with the k ⋅ p Hamiltonian is given in
Supplementary Note 7.

The results of the second SW class for the Dirac, nodal-line, andWeyl
semimetals are combined as follows. The gappedHamiltonian in the kz = 0
plane of nonsymmorphic systems with fC2zj00 1

2g andΘ is characterized by
the second SW classw2, which takes theZ2 values. Ifw2 = 1 and the system
has a finite energy gap except on the kz-axis, a gap-closing object is formed
by four bands on the kz-axis. Depending on the symmetry, it can be a pair of
Weyl points, a nodal line, or a Dirac point. This is also the case for sym-
morphic systems with different w2 on the kz = 0 and kz = π planes. In this
perspective, the Dirac semimetal such as Y8CoIn3 can be understood as a
systemwith adouble band inversionwhere theparameters arefine-tunedby
the symmetry. The surface states of the three topological semimetal phases
characterized by the second SW class are discussed in Supplemen-
tary Note 8.

Spinful Dirac semimetal
We now turn our attention to the spinful systems. Since Y8CoIn3 is mostly
composed of Y, strong SOC can be introduced by substitution to lantha-
nides. Figure 6a shows the electronic band structure of Lu8CoGa3 calculated
in the presence and absence of the SOC. The Lu 5d orbitals have a strong
SOC compared to the Y 4d orbitals, resulting in significant SOC splitting
near the Fermi level in Lu8CoGa3. In Fig. 6b, the single-valued repre-
sentationsΔ5 andΔ6 transform intoΔ7⊕Δ8 andΔ7⊕Δ9, respectively,when
the SOC is turned on. The double-valued representations Δ7, Δ8, and Δ9 are

Fig. 6 | The electronic band structure of Lu8CoGa3 calculated with and without
the SOC. a The electronic band structure of Lu8CoGa3 calculated by the GGA. The
blue solid line and the black dashed line show the result with and without the SOC,
respectively. The energy is measured from the Fermi level in the spinless calculation.
bMagnified band structure in the shaded region in (a). The irreps of the bands with
the SOC are indicated.
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all 2-dimensional irreps that are distinguished by the screw symmetry
around the z-axis. The two bands belonging to Δ7 hybridize and open the
energy gap. The hybridization of bands belonging to different representa-
tions is prohibited; therefore, three Dirac points are formed near the Fermi
level, which are not related by any symmetry and have different energies.
The SOCgap of Lu8CoGa3 can bemeasured by taking the energy difference
between the maximum of the lower Δ7 band and the intersection of the Δ8
and Δ9 bands, which approximately equals 75meV. When Lu is replaced
with Y, the magnitude of the SOC is drastically reduced to 1/3 or less (see
Supplementary Note 3).

Magnetic Weyl semimetal
The use of lanthanides as substitutes can introduce magnetism. In the
presence of magnetic rare-earth atoms, the time-reversal symmetry is
broken. It is intriguing to examine the evolution of topological features near
the Fermi energy in the presence of afinitemagnetization. TheDirac cone is
expected to split into a pair ofWeyl points with opposing chiralities1,9,14.We
have opted for Nd8CoGa3 as our magnetic prototype system, applying an
all-electron full-potential KKRGreen functionmethodwith the generalized
gradient approximation (GGA) for exchange-correlation energy55. The
nonmagnetic La8CoGa3 has a small Fermi surface around the kz = 0 plane
(see Supplementary Note 3), and there is also a low DOS at the Fermi level
when Nd replaces La (Fig. 7a). The Ndmagnetic atom is in a 3+ state, and
has amagneticmoment of 3.19 μB per atom in agreementwithHund’s rules
(the moment points along the c-axis). Due to the finite spin polarization on
Nd, an induced moment of 0.43 μB emerges on the Co atoms with an
antiferromagnetic coupling to the Nd atoms. Additionally, a weak induced
moment of 0.04 μB appears on the Ga atoms.

The electronic band structure forNd8CoGa3without the SOC is shown
in Fig. 7b. As expected from theDOS, the gap is populated by the Co 3d and
Ga 4p bands, as a consequence of the spin splitting introduced by the Nd
magnetic moment (see Fig. 7a). Nonetheless, the gap remains open and
unaltered along the [AL, LH, HA] directions. This is because a large energy
gap is opened around the kz = π plane in RE8CoX3 materials, and the
number of occupied bands in themagnetic state, excluding the 4f orbitals, is
unchanged compared to the nonmagnetic state. The band structure for each

spin component is presented in Supplementary Note 9. Each of the Dirac
points in the Γ-A line splits into a pair ofWeyl points in the presence of the
SOC as shown in Fig. 7c. Furthermore, given that the filling of the gap
originates from the induced spin polarization on Co and Ga, we investigate
the electronic band structure in the paramagnetic phase. To simulate the
paramagnetic state, we employ the disordered local moment (DLM)
approach56, the fully magnetic disordered state is then established using the
coherent potential approximation (CPA)57. In the disordered state, the
inducedmoments on theCo andGavanish, hence fewerbands are observed
in the gap in comparison with the ferromagnetic state (see Fig. 7d). The
magnetic disorder causes the smearing of the electronic bands. The
dependence of bands populating the gap on the induced spin polarization
indicates that the Fermi surface, and semimetallic character can be tuned via
the magnetic order and finite temperature effects. Since the spin splitting of
itinerant 4d electrons is small, the band structure shown in Fig. 7d is in good
agreement with the band structure calculated with a pseudopotential that
treats theNd 4f orbitals as core states (see SupplementaryNote 9). Lastly, as
the magnetic order alters the topological band structure of Nd8CoGa3, we
performed a preliminary analysis of the magnetic interactions in real space
using the infinitesimal rotation method58, and find that the intralayer and
interlayer magnetic coupling is predominantly ferromagnetic with a tran-
sition temperature of Tc = 40 K. The relatively high temperature can be
attributed to the high number of rare-earth atoms within the unit cell.

Discussion
In summary, the ternary compounds RE8CoX3 (RE = rare earth elements,
X =Al,Ga, or In) are the ideal platform for the spinlessDirac semimetal and
the topological transitions. The strength of the SOC in thesematerials can be
adjusted by substituting elements, and those containing Y have a smaller
SOC. The Dirac points in these materials are manifested by accidental
degeneracy of the two different 2-dimensional irreps of C6v on the kz-axis.
The degeneracies between the valence bands and between the conduction
bands are generally lifted away from the kz-axis, but there are degenerate
lines on the mirror planes extending from the Dirac points. The nontrivial
topology of the bulk states is characterized by the Zak phases for each glide
sector, which corresponds to the twomidgap bands in the surface extending

Fig. 7 | The electronic structure of themagneticmaterial Nd8CoGa3 calculated by
the KKR method. a The PDOS of Nd8CoGa3 calculated without the SOC. b The
electronic band structure of Nd8CoGa3 without the SOC. c The electronic band
structure of Nd8CoGa3 with the SOC included self-consistently in ferromagnetic

configurations. d The electronic band structure of Nd8CoGa3 in the paramagnetic
state computed using the DLM approach. The smearing of the bands is due to the
finite temperature effects.
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from the projection of the bulk Dirac point. Furthermore, we discuss the
topological phase transitions under the distortions and the elemental sub-
stitutions. Uniaxial compression, which preserves the twofold screw sym-
metry, breaks theC6v symmetry and turns theDirac point into thenodal line
or the pair ofWeyl points. Themagnetic lanthanide elements can replace Y,
resulting in a spinful magnetic Weyl semimetallic phase in the system.

Methods
The electronic structure ofY8CoIn3 is calculated basedondensity functional
theory (DFT) as implemented in theViennaAb initio SimulationPackage59.
For the exchange-correlation function, we employ the GGA of Perdew,
Burke, and Ernzerhof (PBE)60. The cutoff energy for the plane wave
expansion is 350 eV and a k-point mesh of 8 × 8 × 12 is adopted. The cal-
culations are based on the experimental crystal structure. The irreps of the
bands are obtained using the IrRep package61,62. To calculate the PDOS, Zak
phases, and surface states, we construct a tight-binding Hamiltonian from
the DFT results using the Wannier90 package63. From the Bloch functions
within the range from 4 eV below to 10 eV above the Fermi level, we con-
struct 114Wannier functions for the Y 4d orbitals, the Co 3d orbitals, the In
5porbitals, and the interstitial sorbitals near theCoatoms.The surface states
are calculated by the iterative Green’s functionmethod64–66 implemented in
the WannierTools package67. The WannierTools package is also used,
mutatis mutandis, to calculate the Zak phases. When we investigate topo-
logical phase transitions caused by uniaxial strains, the lattice is compressed
in one direction and expanded uniformly in the two orthogonal directions
so that the volume of the unit cell is preserved, and then the structure is
optimized using the revised PBE for solids68 as the exchange-correlation
functional.

For the magnetic Weyl semimetals, our first-principles simulations
employ the all-electron full-potential KKR Green function method69 with
andwithout SOC. The 4f electrons are treated using theDFT+U approach
in the Dudarev formulation70 with U = 6 eV. The self-consistent energy
contour is divided into 48 energy points with a 25 × 25 × 25 k-mesh in the
BZ. The electronic band structure along the high symmetry path represents
the quasiparticle density of states computed directly from the Green func-
tion in the ordered ferromagnetic or paramagnetic (DLM) states71.

Data availability
The datasets generated and analyzed during the current study are available
from the corresponding author upon reasonable request.
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