001032490 001__ 1032490
001032490 005__ 20241120212350.0
001032490 037__ $$aFZJ-2024-06283
001032490 041__ $$aEnglish
001032490 1001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b0$$eCorresponding author$$ufzj
001032490 1112_ $$a6th Workshop on Quantum and Classical Cryogenic Devices, Circuits, and Systems$$cSendai$$d2024-11-05 - 2024-11-06$$gQCCC2024$$wJapan
001032490 245__ $$aSuperconductive Coupling and Josephson Diode Effect in Topological Insulator-Based Multi-Terminal Hybrid Structures
001032490 260__ $$c2024
001032490 3367_ $$033$$2EndNote$$aConference Paper
001032490 3367_ $$2DataCite$$aOther
001032490 3367_ $$2BibTeX$$aINPROCEEDINGS
001032490 3367_ $$2DRIVER$$aconferenceObject
001032490 3367_ $$2ORCID$$aLECTURE_SPEECH
001032490 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1732086292_29407$$xInvited
001032490 500__ $$aDeutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1 – 390534769 Bavarian Ministry of Economic Affairs, Regional Development and Energy within Bavaria’s High-Tech Agenda Project "Bausteine für das Quantencomputing auf Basis topologischer Materialien mit experimentellen und theoretischen Ansätzen" (grant no. 07 02/686 58/1/21 1/22 2/23).
001032490 502__ $$cTohoku University
001032490 520__ $$aThe combination of s-type superconductors with three-dimensional topological insulators creates apromising platform for fault-tolerant topological quantum circuits based on Majorana braiding. Thebackbone of the braiding mechanism is a three-terminal Josephson junction. To implement this concept,a deeper understanding of the underlying mechanisms in topological insulator nanoribbon networksequipped with superconducting electrodes is required. The samples for our experiments are fabricatedby a combination of selective area growth of the topological insulator and shadow mask evaporation ofthe superconductor. As a first step, we investigate nanoribbon kinks and T-junctions of the topologicalinsulator [1,2]. In kink structures, a π-periodic change of the conductance is observed as a function ofthe angle of an in-plane magnetic field. We attribute this phenomenon to an orbital effect leading to analignment or misalignment of the phase-coherent states on the lower and upper surfaces of the kinkbranches depending on the magnetic field orientation. The experimental results are supported by atheoretical analysis based on a surface Rashba-Dirac model and tight-binding simulations. As a nextstep, the transport properties of topological insulator-based three-terminal Josephson junctions aremapped and the cross-coupling of the junctions is analyzed. Under the application of an out-of-planemagnetic field, a multi-terminal geometry induced diode effect is observed.start here. Only one pageabstract including figures and references.Work done in collaboration with: Gerrit Behner, Abdur Rehman Jalil, Kristof Moors, MichaelSchleenvoigt, Jonas Kölzer, Erik Zimmermann, Alina Rupp, Peter Schüffelgen, Hans Lüth, DetlevGrützmacher.References[1] Kölzer, J.; Jalil, A. R.; Rosenbach, D.; Arndt, L.; Mussler, G.; Schüffelgen, P.; Grützmacher,D.; Lüth, H., Schäpers, T. Supercurrent in Bi4Te3 topological material-based three-terminaljunctions, Nanomaterials, 13, 293 (2023)[2] Behner, G.; Moors, K.; Zhang, Y.; Schleenvoigt, M.; Rupp, A.; Zimmermann, E.; Jalil, A. R.;Schüffelgen, P.; Lüth, H.; Grützmacher, D., Schäpers, T. In-plane magnetic field drivenconductance modulations in topological insulator kinks, Phys. Rev. B, 109, 155429 (2024)
001032490 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001032490 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001032490 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
001032490 909CO $$ooai:juser.fz-juelich.de:1032490$$pVDB
001032490 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b0$$kFZJ
001032490 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001032490 9141_ $$y2024
001032490 920__ $$lyes
001032490 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001032490 980__ $$aconf
001032490 980__ $$aVDB
001032490 980__ $$aI:(DE-Juel1)PGI-9-20110106
001032490 980__ $$aUNRESTRICTED