001     1032490
005     20241120212350.0
037 _ _ |a FZJ-2024-06283
041 _ _ |a English
100 1 _ |a Schäpers, Thomas
|0 P:(DE-Juel1)128634
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 6th Workshop on Quantum and Classical Cryogenic Devices, Circuits, and Systems
|g QCCC2024
|c Sendai
|d 2024-11-05 - 2024-11-06
|w Japan
245 _ _ |a Superconductive Coupling and Josephson Diode Effect in Topological Insulator-Based Multi-Terminal Hybrid Structures
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1732086292_29407
|2 PUB:(DE-HGF)
|x Invited
500 _ _ |a Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1 – 390534769 Bavarian Ministry of Economic Affairs, Regional Development and Energy within Bavaria’s High-Tech Agenda Project "Bausteine für das Quantencomputing auf Basis topologischer Materialien mit experimentellen und theoretischen Ansätzen" (grant no. 07 02/686 58/1/21 1/22 2/23).
502 _ _ |c Tohoku University
520 _ _ |a The combination of s-type superconductors with three-dimensional topological insulators creates apromising platform for fault-tolerant topological quantum circuits based on Majorana braiding. Thebackbone of the braiding mechanism is a three-terminal Josephson junction. To implement this concept,a deeper understanding of the underlying mechanisms in topological insulator nanoribbon networksequipped with superconducting electrodes is required. The samples for our experiments are fabricatedby a combination of selective area growth of the topological insulator and shadow mask evaporation ofthe superconductor. As a first step, we investigate nanoribbon kinks and T-junctions of the topologicalinsulator [1,2]. In kink structures, a π-periodic change of the conductance is observed as a function ofthe angle of an in-plane magnetic field. We attribute this phenomenon to an orbital effect leading to analignment or misalignment of the phase-coherent states on the lower and upper surfaces of the kinkbranches depending on the magnetic field orientation. The experimental results are supported by atheoretical analysis based on a surface Rashba-Dirac model and tight-binding simulations. As a nextstep, the transport properties of topological insulator-based three-terminal Josephson junctions aremapped and the cross-coupling of the junctions is analyzed. Under the application of an out-of-planemagnetic field, a multi-terminal geometry induced diode effect is observed.start here. Only one pageabstract including figures and references.Work done in collaboration with: Gerrit Behner, Abdur Rehman Jalil, Kristof Moors, MichaelSchleenvoigt, Jonas Kölzer, Erik Zimmermann, Alina Rupp, Peter Schüffelgen, Hans Lüth, DetlevGrützmacher.References[1] Kölzer, J.; Jalil, A. R.; Rosenbach, D.; Arndt, L.; Mussler, G.; Schüffelgen, P.; Grützmacher,D.; Lüth, H., Schäpers, T. Supercurrent in Bi4Te3 topological material-based three-terminaljunctions, Nanomaterials, 13, 293 (2023)[2] Behner, G.; Moors, K.; Zhang, Y.; Schleenvoigt, M.; Rupp, A.; Zimmermann, E.; Jalil, A. R.;Schüffelgen, P.; Lüth, H.; Grützmacher, D., Schäpers, T. In-plane magnetic field drivenconductance modulations in topological insulator kinks, Phys. Rev. B, 109, 155429 (2024)
536 _ _ |a 5222 - Exploratory Qubits (POF4-522)
|0 G:(DE-HGF)POF4-5222
|c POF4-522
|f POF IV
|x 0
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 1 7 |a Information and Communication
|0 V:(DE-MLZ)GC-120-2016
|2 V:(DE-HGF)
|x 0
909 C O |o oai:juser.fz-juelich.de:1032490
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)128634
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5222
|x 0
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21