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A B S T R A C T

This study introduces CADET-Julia, an open-source, versatile and fast chromatography solver implemented
in the Julia programming language. The software offers a platform for rapid prototyping and numerical
refinement for a range of chromatography models, including the general rate model (GRM). The interstitial
column mass balance was spatially discretized using a strong-form discontinuous Galerkin spectral element
method (DGSEM) whereas a generalized spatial Galerkin spectral method (GSM) was applied for the particle
mass balance. Three different benchmarks showcased the computational efficiency of CADET-Julia: A baseline
benchmark was established by comparing the Julia implementation to a C++ implementation that employed
the same mathematical methods and time integrator (CADET-DG). Various Julia time integrators were tested,
and with the best-performing settings, the Julia implementation was benchmarked against CADET-DG and a
finite volume (FV) based implementation in C++ (CADET-FV). Overall, Julia implementations performed better
than C++ implementations and Galerkin methods were generally superior to finite volumes.
1. Introduction

Chromatography is an essential unit operation in many industries,
for example, the biopharmaceutical industry, where several chromatog-
raphy steps are usually integrated in the downstream process (Kumar
and Lenhoff, 2020; Schmidt-Traub et al., 2020; Zydney, 2016). In
the purification of biopharmaceuticals, the role of chromatography
in the downstream process is typically to capture, purify and polish
the product before it is sent to formulation (Carta and Jungbauer,
2020). These chromatography steps are generally expensive and can
account for up to 80% of the total manufacturing costs (Kozorog et al.,
2023). Thus, optimizing the chromatography processes is crucial to
ensure, e.g., high purity and yield, minimizing solvent consumption, en-
hancing high productivity and product titer, extending resin life-time,
reducing manufacturing costs. Quantitative mathematical modeling can
be essential for this optimization (Kumar and Lenhoff, 2020). Three
transport models are customarily used to mathematically describe the
solute transport through a chromatography column which, in ascending
order of complexity, are the LRM, the lumped rate model with pores
(LRMP) and the GRM. These models all describe transport of solutes
using partial differential equations (PDE). Adsorption is mathematically
described by isotherms or binding kinetics. The adsorption process is

∗ Correspondence to: Forschungszentrum Jülich, IBG-1: Biotechnology, 52425 Jülich, Germany.
E-mail address: e.von.lieres@fz-juelich.de (E. von Lieres).

often assumed to be in rapid equilibrium, resulting in partial differ-
ential algebraic equations (PDAE) (Kumar and Lenhoff, 2020). These
transport models, coupled with an isotherm or binding kinetic, can
be used to optimize the chromatography process by formulating an
objective function which is minimized subject to constraints. As closed-
form solutions are not available for most chromatography models, the
models must be solved numerically. During the optimization, the chro-
matography models must be solved a great number of times, depending
on the number of optimization variables. Consequently, the efficiency
of the optimization process is heavily reliant on the simulation speed
and reliability of the numerical methods employed for solving the
models.

To solve the PDE and PDAE, the method of lines is commonly used.
That means the PDAE are discretized in space to yield a differential
algebraic equation (DAE) system and the DAE are discretized in time
to yield a purely algebraic system. These can be solved with pub-
licly available ordinary differential equation (ODE) and DAE solvers,
respectively. There are many methods to discretize in time. Vari-
ous software packages have been developed to solve chromatography
models (Andersson et al., 2023; Meyer et al., 2020; Berninger et al.,
1991; Hahn et al., 2015; Leweke and von Lieres, 2018; Schmölder and
https://doi.org/10.1016/j.compchemeng.2024.108913
Received 11 July 2024; Received in revised form 30 September 2024; Accepted 30
vailable online 12 November 2024 
098-1354/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar
 October 2024

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/cace
https://www.elsevier.com/locate/cace
mailto:e.von.lieres@fz-juelich.de
https://doi.org/10.1016/j.compchemeng.2024.108913
https://doi.org/10.1016/j.compchemeng.2024.108913
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2024.108913&domain=pdf
http://creativecommons.org/licenses/by/4.0/


J. Frandsen et al.

u
i
a
h
s
s
f
t
m
i
a
d

i

e

i

i

c

J
t

C
m
i
i

i
i
G
D

b
m
t

w
v
c
i
p
e

(

Computers and Chemical Engineering 192 (2025) 108913 
Kaspereit, 2020; Zafar et al., 2023). The most powerful and commonly
sed open-source numerical solver for solving chromatography models
s CADET-Core (Leweke and von Lieres, 2018), formerly simply known
s CADET, which is now the name of the umbrella framework compre-
ending tools such as CADET-Process in addition to the numerical core
olver(s). The original implementation started as a chromatography
olver using a spatially weighted essentially non oscillatory (WENO)
inite volume (FV) method (von Lieres and Andersson, 2010). Since
hen, CADET-Core was continuously expanded, enhancing both its nu-
erical and modeling capabilities. The most significant advancements

nclude algorithmic differentiation for computing the system Jacobian
nd parameter sensitivities (Püttmann et al., 2013), and the DGSEM
iscretization for chromatography models (Breuer et al., 2023). At

the same time, the model family in CADET-Core was extended by
ncluding many adsorption models (e.g. HIC-isotherm (Jäpel and Buyel,

2022)), a 2D GRM, reactors, simulated moving beds (He et al., 2018),
and population balance models for crystallization/precipitation (Zhang
t al., 2024).

The CADET-Core code base is entirely developed in the program-
ming language C++. Whereas C++ is generally recognized for its great
computational performance, it is a low-level compiled language and
thus demands more programming expertise compared to high-level
programming languages such as Python. The abstract and extensive
code base implemented in an object-oriented manner makes CADET-
Core modular and extendable but also hard to comprehend for less
experienced programmers. While the extensive of CADET-Core makes
it very attractive for users, it requires a lot of programming and
inside knowledge on the developer side to implement new models. For
complex chromatography modes, such as mixed-mode chromatogra-
phy, where the knowledge base and selection of isotherm models are
limited (Kumar and Lenhoff, 2020), discovering and implementing new
sotherm models is frequently required. The new isotherm models could

either be mechanistic models or machine learning models (Nogueira
et al., 2022; Santana et al., 2023). As the code-base is written in C++,
it must be compiled before it can be used. Typically, a Python wrapper
s used to run the CADET-Core code base. Furthermore, if a new model

is implemented in CADET-Core, the entire C++ code base must be re-
ompiled, which is not required in higher programming languages such

as Python. Contrary to C++, Python is a dynamic high-level program-
ming language that is easy to use and thus requires less programming
expertise by the user. However, the ease of using Python comes at the
expense of lower computational performance. Meanwhile, the program-
ming language Julia leverages the advantages of C++ and Python as
it is a dynamic, high-level programming language that simultaneously
generates fast, low-level machine code (Bezanson et al., 2017). Upon
the initial run of code, Julia automatically compiles low-level machine
code which is then reused for subsequent executions, thus offering high
computational performance. Additionally, Julia has a broad range of
ODE solvers for stiff problems (Rackauckas and Nie, 2017), which are
often encountered in chromatography modeling (Kumar and Lenhoff,
2020).

To address the above mentioned challenges, we introduce CADET-
ulia, a more streamlined but limited code base. It retains fewer func-
ionalities and a smaller model family but substantially simplifies the

model implementation process. With Julia’s high-level syntax and self-
compiling capabilities, users can implement new models with limited
programming expertise. Despite the simplified model implementation,

ADET-Julia cannot compromise on computational performance, as it
ust ensure efficiency in simulation and optimization tasks. Therefore,

t is important to implement a reliable and fast discretization method
n CADET-Julia. Lately, fast higher order discretization methods have

been implemented for chromatography models. Meyer et al. (2020)
mplemented the first arbitrary order DGSEM to discretize the column
n the axial direction for the GRM, complemented by an arbitrary order
SM to discretize the particles. Breuer et al. (2023) added a collocation
GSEM to discretize the axial column direction, which proved to be
2 
slightly more efficient computationally. Their spatial discretization was
complemented by a DGSEM particle discretization, which allows for
targeted resolution of the particles (as opposed to GSM) and impene-
trable particle cores. Both studies showed that the DGSEM was superior
to the finite volume method in most cases. A DGSEM has also been
successfully applied on the LRM for specific Langmuir isotherm variants
considering non-isothermal conditions (Zafar et al., 2021; Khan et al.,
2021) as well as reactions (Zafar et al., 2023). Due to the great accuracy
of the DGSEM in solving chromatography models, CADET-Julia was
based on the CADET-Core DGSEM implementation. From here on,
we refer to the FV and DGSEM implementations in CADET-Core as
CADET-FV and CADET-DG.

In light of these developments, this study aims to perform extensive
benchmarks of CADET-Julia against the C++ implementations CADET-
FV and CADET-DG in terms of convergence of maximum absolute
error (MAE), degrees of freedom (DoF) and simulation time for various
batch case studies. The following sections will detail the methodology
and results of these benchmarks, starting with an analysis of spatial
discretization variants, i.e. GSM vs DGSEM for particle discretization.
Next, we conduct a baseline benchmark to isolate the performance
differences between the programming languages C++ and Julia as
closely as possible. Subsequently, various Julia ODE solvers and a DAE
solver will be benchmarked for various chromatography models and
settings to identify the fastest time integrator. Finally, an ultimate
performance benchmark is conducted, in which the fastest settings from
CADET-Julia will be directly compared to CADET-FV and CADET-DG.
The implications of these performance differences will be discussed.

2. Chromatography models

We consider chromatography models to be modular w.r.t. trans-
port and adsorption (binding), i.e. any transport model can be com-
ined with any adsorption model. In this work, we consider the three
ost commonly used transport models in chromatography, namely

he GRM, LRMP, LRM. As these models have been reported many
times (Guiochon et al., 2006; Gu, 2015; Schmidt-Traub et al., 2020),

e focus on a concise description of the GRM. In the interstitial column
olume, the GRM accounts for convection and dispersion of the bulk
oncentrations 𝑐𝑏𝑖 in axial direction 𝑧 ∈ (0, 𝐿) as well as film diffusion
nto the particles, with particle liquid concentration 𝑐𝑝𝑖 , for each com-
onent 𝑖 ∈ {1,… , 𝑁𝑐}. These mass transfer effects are governed by the
quation

𝜕 𝑐𝑏𝑖
𝜕 𝑡 = −𝑢 𝜕 𝑐

𝑏
𝑖

𝜕 𝑧 +𝐷𝑎𝑥,𝑖
𝜕2𝑐𝑏𝑖
𝜕 𝑧2 +

(1 − 𝜀𝑐 )
𝜀𝑐

𝑘𝑓 ,𝑖 3
𝑅𝑝

(𝑐𝑏𝑖 − 𝑐𝑝𝑖 |𝑟=𝑅𝑝
) (1)

in (0, 𝑇end) × (0, 𝐿) with Danckwerts boundary conditions

𝑢𝑐in,𝑖 =

(

𝑢𝑐𝑏𝑖 −𝐷ax,𝑖
𝜕 𝑐𝑏𝑖
𝜕 𝑧

)

|

|

|

|

|𝑧=0
on (0, 𝑇end), (2a)

0 = −𝐷ax,𝑖
𝜕 𝑐𝑏𝑖
𝜕 𝑧

|

|

|

|

|𝑧=𝐿
on (0, 𝑇end), (2b)

where 𝑡 ∈ [0, 𝑇𝑒𝑛𝑑 ] is time, 𝑇𝑒𝑛𝑑 is the end time, 𝐿 is the length of
the column. The film mass transfer coefficient is denoted by 𝑘𝑓 ,𝑖, 𝐷ax
is the axial dispersion coefficient and 𝑐in,𝑖 denotes the column inlet
concentrations.

In the particles, diffusion–reaction equations hold in (0, 𝑇end) ×
0, 𝐿) × (𝑅𝑐 , 𝑅𝑝) ∶

𝜕 𝑐𝑝𝑖
𝜕 𝑡 +

(1 − 𝜀𝑝)
𝜀𝑝

𝜕 𝑐𝑠𝑖
𝜕 𝑡 = 1

𝑟2
𝜕
𝜕 𝑟

(

𝑟2𝐷𝑝,𝑖
𝜕 𝑐𝑝𝑖
𝜕 𝑟

)

+
(1 − 𝜀𝑝)

𝜀𝑝
1
𝑟2

𝜕
𝜕 𝑟

(

𝑟2𝐷𝑠,𝑖
𝜕 𝑐𝑠𝑖
𝜕 𝑟

)

,

(3)

𝑝 𝑝 𝑠 𝑠
0 = 𝑓bind(𝑐0 ,… , 𝑐𝑁𝑐
, 𝑐0,… , 𝑐𝑁𝑐

). (4a)
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Here, 𝑐𝑠𝑖 is the stationary particle phase concentration of component 𝑖,
𝑟 ∈ [𝑅𝑐 , 𝑅𝑝] is the radial particle coordinate, 𝑅𝑝 > 𝑅𝑐 is the particle
radius and 𝑅𝑐 ≥ 0 is the impenetrable particle core radius, 𝜀𝑝 is
the particle porosity, 𝐷𝑝 is the pore diffusion coefficient, and 𝑓𝑏𝑖𝑛𝑑 is
defined by the adsorption model. We note that Eq. (4a) is used for
apid equilibrium adsorption, i.e. when adsorption happens practically
nfinitely fast. This requires that the problem is discretized and solved

as a system of DAEs. If the rate of the adsorption process is limited by
kinetics, the binding is modeled by the following ODE instead
𝜕 𝑐𝑠𝑖
𝜕 𝑡 = 𝑓bind(𝑐

𝑝
0 ,… , 𝑐𝑝𝑁𝑐

, 𝑐𝑠0,… , 𝑐𝑠𝑁𝑐
) (4b)

In this work, we considered the Langmuir isotherm, the SMA isotherm
nd the linear isotherm. For description and mathematical formulation

of the isotherms, we refer to existing literature, e.g. Schmidt-Traub
t al. (2020). Rapid equilibrium can be approximated by multiplying
𝑓bind by a large value, e.g. 108, which was used in this work. This
llowed the system to be solved as a system of ODEs instead of a system
f DAEs which generally is less challenging numerically (see e.g. Hairer

and Wanner (1996)).
The boundary conditions for Eq. (3) are given on (0, 𝑇end) × (0, 𝐿) by

(

𝜀𝑝𝐷𝑝,𝑖
𝜕 𝑐𝑝𝑖
𝜕 𝑟 + (1 − 𝜀𝑝)𝐷𝑠,𝑖

𝜕 𝑐𝑠𝑖
𝜕 𝑟

)

|

|

|

|

|𝑟=𝑅𝑝

= 𝑘𝑓 ,𝑖
(

𝑐𝑏𝑖 − 𝑐𝑝𝑖
|

|

|𝑟=𝑅𝑝

)

, (5a)

(

𝜀𝑝𝐷𝑝,𝑖
𝜕 𝑐𝑝𝑖
𝜕 𝑟 + (1 − 𝜀𝑝)𝐷𝑠,𝑖

𝜕 𝑐𝑠𝑖
𝜕 𝑟

)

|

|

|

|

|𝑟=𝑅𝑐

= 0. (5b)

3. Numerical methods

To discretize the space–time domain of the PDAE system given
in Section 2, we apply the so-called method of lines. That is, we
separately discretize the equations in space and time, where we par-
tially implement our own method and draw on available methods,
respectively.

3.1. Spatial discretization

The spatial DGSEM discretization of the bulk Eq. (1) used in this
work is similar to the one in Breuer et al. (2023). The general DGSEM
framework is detailed in Kronbichler (2021) and Winters et al. (2021)
nd the book of Hesthaven and Warburton (2008). As there is sufficient

literature on the method and its application in chromatography, we
only provide concise definitions essential for seamless comprehension
f this work. We provide a more detailed derivation solely for our mod-

ified particle discretization, which extends the GSM derived by Meyer
et al. (2020) with impenetrable particle cores. The GSM uses a global
polynomial approximation with weakly enforced boundary conditions.
It can thus be thought of as a single element DGSEM. The advantages
and disadvantages of these discretizations are discussed in the corre-
sponding benchmark comparison 4.1. In the following, we generalize
the GSM derived by Meyer et al. (2020) to allow for impenetrable
article-cores i.e. 𝑅𝑐 ≥ 0.

The GSM discretization is based on a polynomial approximation of
he solution variable 𝑐 ∶𝛺𝑟 ↦ R, which is computed on a computational
eference element 𝐸 = [−1, 1]. The affine mapping from the reference
lement to the spatial particle domain 𝛺𝑟 = (𝑅𝑐 , 𝑅𝑝) is given by

𝑟(𝜉) = 𝑅𝑐 +
𝛥𝑟
2
(𝜉 + 1), 𝜉 ∈ [−1, 1], (6)

with 𝛥𝑟 = 𝑅𝑝 − 𝑅𝑐 and the Jacobian of the inverse mapping

𝐽−1 =
d𝜉
d𝑟

= 2
𝛥𝑟

. (7)

We approximate the solution via nodal (Lagrange) polynomial inter-
olation of arbitrary degree 𝑁𝑑 on 𝑁𝑛 = 𝑁𝑑+ 1 Lagrange–Gauß–Lobatto
LGL) points

𝑐ℎ(𝜉) =
𝑁𝑑
∑

𝑗=0
𝓁𝑗 (𝜉)𝑐𝑗 ≈ 𝑐(𝜉), (8)
3 
with 𝑐𝑗 ∶= 𝑐(z(𝜉𝑗 )) ∈ R and {𝜉𝑗}
𝑁𝑑
𝑗=0 being the LGL points, and {𝓁𝑗}

𝑁𝑑
𝑗=0

being the Lagrange polynomials

𝓁𝑗 ∶𝐸 → R, 𝜉 ↦

𝑁𝑑
∏

𝑖=0
𝑖≠𝑗

𝜉 − 𝜉𝑖
𝜉𝑗 − 𝜉𝑖

∀𝑗 ∈ {0,… , 𝑁𝑑}. (9)

Discrete equivalents of (partial) integration and differentiation of
such polynomials are computed using the following operators

𝑖,𝑗 ∶=
𝜕𝓁𝑗
𝜕 𝜉 (𝜉𝑖), (10a)

(𝛼 ,𝛽)
𝑖,𝑗 ∶= ∫𝐸

𝓁𝑖(𝜉)𝓁𝑗 (𝜉)(1 + 𝜉)𝛼(1 − 𝜉)𝛽 d𝜉 , (10b)

𝑖,0 ∶ = ∮𝜕 𝐸
𝓁𝑖(𝜉)𝓁0(𝜉)𝒏 d𝜉 , 𝑖,1 ∶= ∮𝜕 𝐸

𝓁𝑖(𝜉)𝓁𝑁𝑑
(𝜉)𝒏 d𝜉 , (10c)

with  ∈ R(𝑁𝑛×𝑁𝑛), (𝛼 ,𝛽) ∈ R(𝑁𝑛×𝑁𝑛),  ∈ R(𝑁𝑛×2) defining the
so-called differentiation matrix, mass matrix and lifting matrix, respec-
tively.

Considering a spherical core–shell 𝛺𝑟 ∶= (𝑅𝑐 , 𝑅𝑝), we multiply
Eq. (3) by a smooth test function 𝜙 ∈ 𝐶∞(𝛺𝑟) and integrate over 𝛺𝑟

n spherical coordinates

∫

𝑅𝑝

𝑅𝑐

𝜙
(

𝜕 𝑐𝑝
𝜕 𝑡 + 1

𝛽𝑝
𝜕 𝑐𝑠
𝜕 𝑡

)

𝑟2 d𝑟

= ∫

𝑅𝑝

𝑅𝑐

𝜙 𝜕
𝜕 𝑟

(

𝑟2
(

𝐷𝑝
𝜕 𝑐𝑝
𝜕 𝑟 + 1

𝛽𝑝
𝐷𝑠

𝜕 𝑐𝑠
𝜕 𝑟

))

d𝑟. (11)

We transform the equation to the computational reference element
sing the affine mapping (6) and get

∫

1

−1
𝜙
(

𝜕 𝑐𝑝
𝜕 𝑡 + 1

𝛽𝑝
𝜕 𝑐𝑠
𝜕 𝑡

)

𝑟2(𝜉) d𝜉

=
( 2
𝛥𝑟

)2

∫

1

−1
𝜙 𝜕
𝜕 𝜉

(

𝑟2(𝜉)
(

𝐷𝑝
𝜕 𝑐𝑝
𝜕 𝜉 + 1

𝛽𝑝
𝐷𝑠

𝜕 𝑐𝑠
𝜕 𝜉

))

d𝜉 . (12)

We approximate the sought solution variables using polynomial
nterpolation of degree 𝑁𝑝

𝑑 ≥ 1

𝑐𝑝(𝑡, 𝜉) ≈
𝑁𝑝

𝑑
∑

𝑘=0
𝑐𝑠𝑘(𝑡)𝓁𝑘(𝜉) =∶ 𝑐𝑝ℎ, (13a)

𝑐𝑠(𝑡, 𝜉) ≈
𝑁𝑝

𝑑
∑

𝑘=0
𝑐𝑠𝑘(𝑡)𝓁𝑘(𝜉) =∶ 𝑐𝑠ℎ. (13b)

In order to obtain a discrete weak form of the equations, we reduce
he test space to the finite dimensional polynomial space P𝑁𝑝

𝑑 ([−1, 1]),
nd perform an integration by parts, which gives us for all Lagrange
asis functions 𝓁𝑖:

∫𝐸

(

𝜕 𝑐𝑝ℎ
𝜕 𝑡 + 𝛽𝑝

𝜕 𝑐𝑠ℎ
𝜕 𝑡

)

𝓁𝑖𝑟
2(𝜉)d𝜉 =

( 2
𝛥𝑟

)2
[

+ ∮𝜕 𝐸
𝜕
𝜕 𝜉

(

𝐷𝑝𝑐
𝑝
ℎ +

1
𝛽𝑝

𝐷𝑠𝑐
𝑠
ℎ

)

× 𝓁𝑖𝑟
2(𝜉)𝒏d𝑠

− ∫𝐸
𝜕
𝜕 𝜉

(

𝐷𝑝𝑐
𝑝
ℎ +

1
𝛽𝑝

𝐷𝑠𝑐
𝑠
ℎ

)

×
𝜕𝓁𝑖
𝜕 𝜉 𝑟2(𝜉)d𝜉

]

.

We have to compute integrals of the form

∫𝐸

𝜕 𝑐𝑝ℎ
𝜕 𝜉

𝜕𝓁𝑖
𝜕 𝜉 𝑟2(𝜉)d𝜉 =

𝑁𝑝
𝑑

∑

𝑘=0
𝑐𝑠𝑘(𝑡)∫𝐸

𝜕𝓁𝑘(𝜉)
𝜕 𝜉

𝜕𝓁𝑖
𝜕 𝜉 𝑟2(𝜉)d𝜉 ,

with

𝑟2𝑘(𝜉) = 𝑅2
𝑐 + 𝑅𝑐𝛥𝑟(1 + 𝜉) +

(𝛥𝑟
2

)2
(1 + 𝜉)2, (14)

and hence collect the following expression into a discrete operator

𝐴(𝑎,𝑏) ∶ = 𝜕𝓁𝑖 𝜕𝓁𝑗 (1 − 𝜉)𝛼(1 + 𝜉)𝛽 d𝜉
𝑖,𝑗 ∫𝐸 𝜕 𝜉 𝜕 𝜉
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=
𝑁𝑝

𝑑
∑

𝑛=0

𝑁𝑝
𝑑

∑

𝑚=0

𝜕𝓁𝑖
𝜕 𝜉

|

|

|𝜉𝑛

𝜕𝓁𝑗
𝜕 𝜉

|

|

|𝜉𝑚 ∫𝐸
𝓁𝑛𝓁𝑚(1 − 𝜉)𝑎(1 + 𝜉)𝑏 d𝜉

=
(

𝐷𝑇𝑀𝑎,𝑏𝐷
)

𝑖,𝑗 ,

for which the entries are calculated exactly via a transformation of
the nodal polynomial to the respective normalized Jacobi polynomial
basis, i.e. with 𝛼 = 0 and 𝛽 ∈ {0, 1, 2}, respectively (see Hesthaven and

arburton (2002)).
Defining the following discrete operators

𝑟 ∶= 0,0𝑅2
𝑐 +0,1𝑅𝑐𝛥𝑟 +0,2

(𝛥𝑟
2

)2
, (16a)

𝑟 ∶= 0,0𝑅2
𝑐 +0,1𝑅𝑐𝛥𝑟 +0,2

(𝛥𝑟
2

)2
, (16b)

we get the particle discretization as

̇ 𝑝 + 𝛽𝑝 𝑐̇
𝑠 =

( 2
𝛥𝑟

)2
(𝑟)−1

⎡

⎢

⎢

⎢

⎢

⎣

− (𝑟)
(

𝐷𝑝𝑐
𝑝 + 1

𝛽𝑝
𝐷𝑠𝑐

𝑠
)

+

⎛

⎜

⎜

⎜

⎜

⎝

𝜕
𝜕 𝜉

(

𝐷𝑝𝑐
𝑝
ℎ +

1
𝛽𝑝
𝐷𝑠𝑐𝑠ℎ

)

𝑅2
𝑐

𝜕
𝜕 𝜉

(

𝐷𝑝𝑐
𝑝
ℎ +

1
𝛽𝑝
𝐷𝑠𝑐𝑠ℎ

)

𝑅2
𝑝

⎞

⎟

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎦

, (17)

with 𝑐̇𝑝, 𝑐𝑝, 𝑐𝑠 being the vectors of the respective nodal polynomial
oefficients.

Inserting the boundary conditions (mapped to the reference ele-
ment), we get

̇ 𝑝 + 𝛽𝑝 𝑐̇
𝑠 =

( 2
𝛥𝑟

)2
(𝑟)−1

⎡

⎢

⎢

⎣

− (𝑟)
(

𝐷𝑝𝑐
𝑝 + 1

𝛽𝑝
𝐷𝑠𝑐

𝑠
)

+𝛥𝑟
2

⎛

⎜

⎜

⎝

0
1
𝜀𝑝
𝑘𝑓

(

𝑐𝑏 − 𝑐𝑝
)

𝑅2
𝑝

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

. (18)

We note that this formulation is equivalent to the one in Meyer et al.
(2020), if 𝑅𝑐 = 0, i.e. without impenetrable particle cores.

The discretized weak formulation of the complementing (here rapid-
equilibrium) binding Eq. (4) is given for all test functions 𝓁𝑗 of the
Lagrange basis {𝓁𝑖}

𝑁𝑝
𝑑

𝑖=0 by

∫𝐸
𝑐̇𝑝ℎ𝓁𝑗 (𝜉)𝑅

2
𝑐 (𝜉)

𝛥𝑟
2

d𝜉 = ∫𝐸

𝑁𝑝
𝑑

∑

𝑘=0
𝑓bind(𝑐

𝑝
ℎ(𝜉𝑘), 𝑐𝑠ℎ(𝜉𝑘))𝓁𝑘(𝜉)𝓁𝑗 (𝜉)𝑅2

𝑐 (𝜉)
𝛥𝑟
2

d𝜉 .

(19)

Here, 𝑐̇𝑝ℎ is the spatial polynomial approximation of the time derivative
variable 𝜕 𝑐𝑝

𝜕 𝑡 . Applying the inverse mass matrix yields
̇𝑐𝑠 = 𝑓𝑏𝑖𝑛𝑑 (𝑐𝑏, 𝑐𝑠). (20a)

Note that for rapid equilibrium bindings, we get

0 = 𝑓𝑏𝑖𝑛𝑑 (𝑐𝑏, 𝑐𝑠). (20b)

3.2. Temporal discretization

To integrate the semi-discretized system in time, we make use of
available, efficient and well-established methods. Here, we exploit the
lexibility of CADET-Julia, to apply various time integration methods,
hile CADET-Core is fixed to using an adaptive time step, variable
rder backwards differentiation formula (BDF) method implemented in

the IDA solver of the SUNDIALS software package (Hindmarsh et al.,
2005; Gardner et al., 2022). Whereas this method has proven to be
suitable for a general purpose simulation tool like CADET-Core, our
goal is to find the best suited methods in CADET-Julia for the specific
roblems considered in this work.
4 
Two different approaches of solving the rapid-equilibrium were
mplemented in CADET-Julia. First, the true rapid equilibrium
q. (4a) was implemented, resulting in a DAE system. Here, the

semidiscrete scheme is complemented by the IDA BDF method.
n CADET-Julia, the IDA time integrator was used through the
undials.jl package (Rackauckas and Nie, 2017), which imple-

ments an interface to the C++ implementation of the Sundi-
als package, and uses a Sundials linear solver as the internal
Newton method. In CADET-Core, IDA is complemented with a
linear solver from the Eigen library (Guennebaud and Benoît,
2010).

Alternatively, the rapid equilibrium was approximated using Eq.
4b) multiplied with a large kinetic constant, resulting in an ODE sys-

tem. For solving the ODE systems, Julia has many different ODE solvers
vailable through the DifferentialEquations.jl package (Rackauckas and

Nie, 2017). These native Julia solvers use the LinearSolve.jl library
as their linear solver. Of the many different ODE solvers available
n the DifferentialEquations.jl package, only the implicit stiff solvers
ere benchmarked as the chromatography models are generally stiff
roblems (Kumar and Lenhoff, 2020). A quick screening showed that

the FBDF, QNDF and the QBDF solvers were by far the most useful.
The FBDF is a fixed-leading coefficient adaptive-order with adaptive
timestep BDF (Shampine, 2002). The QNDF is an adaptive order quasi-
onstant timestep numerical differentiation formula (NDF) method
hich uses Shampines accuracy-optimal kappa values (Shampine et al.,

1997). The QBDF is an adaptive order quasi-constant timestep BDF
method which is a special case of QNDF method where the kappa
values are set to zero. These solvers are all up to 5th order implicit
solvers. To benchmark these solvers for the case studies, a prototype
Jacobian, generated using FD, was provided to the solver to set the
sparsity pattern. Then, four different approaches for setting up the ODE
solvers were benchmarked to identify the fastest solver for the studied
models. For each solver, four modes for the Jacobian computation and
factorization were tested: Either provide the analytical Jacobian to the
solver or let it calculate the Jacobian via FD. For both modes, the solver
was tested with and without the computation of a preconditioning for
the Jacobian factorization. The analytical Jacobian was split into a
static Jacobian, which could be predetermined, and a dynamic Jacobian
which was updated every time the Jacobian was updated (Meyer et al.,
2020). For the Julia ODE solvers, the linear solver was left empty,
meaning a suitable linear solver was selected automatically for each
individual problem (LinearSolve.jl, 2024).

3.3. Software and implementation

CADET-Julia encompasses a modular implementation of three trans-
port models (GRM, LRMP, LRM) and three binding models (Linear,
Langmuir, SMA), and their spatial discretization using two DGSEM vari-
ants (exact integration and collocation) for the bulk transport Eq. (1)
and a GSM for the particle transport Eq. (3). The GSM was also
implemented in CADET-Core.

CADET-Julia is published on GitHub as open-source software and
can be found on https://github.com/cadet/CADET-Julia. CADET-Core
is also publicly available on github under https://github.com/modsim/
CADET.

In the following, we consider some implementation details of
CADET-Julia, which potentially cause differences in computational per-
ormance compared to CADET-Core, that are unrelated to the program-
ing language, even though the mathematical methods are similar. The

eneral state vector representation for CADET-Core and CADET-Julia is
iven as

𝑅𝐻 𝑆 =[𝑐𝑏0,0,… , 𝑐𝑏end,0, 𝑐𝑏0,1,… , 𝑐end,end,

𝑐𝑝0,0,0,… , 𝑐𝑝end,0,0,… , 𝑐𝑝end,end,0,… , 𝑐𝑝end,end,end
𝑠 𝑠 𝑠 𝑠

(21)
𝑐0,0,0,… , 𝑐end,0,0,… , 𝑐end,end,0,… , 𝑐end,end,end].

https://github.com/cadet/CADET-Julia
https://github.com/modsim/CADET
https://github.com/modsim/CADET
https://github.com/modsim/CADET
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The order of the state vector in CADET-Julia is axial position - radial
(particle) position - component position - major, whereas in CADET-
Core it is component - axial position - radial (particle) position - major.
Thus in CADET-Julia, first all the components in the bulk phase in
a component-wise manner are listed, then all the components in the
particle phase in a component-wise manner are listed and finally all the
components in the stationary phase in a component-wise manner are
listed. With that, we enable easy matrix multiplication in component-
wise manner which follows the derivation of the final form of the
DGSEM discretization from Eq. (18). The implementation of DGSEM
n CADET-Core had to follow another state vector order to match the
nterfaces, e.g. for binding models.

4. Results and discussion

In the following, we investigate case studies similar to the ones
n Breuer et al. (2023), as they cover a wide range of linear and
on-linear settings for all three transport models. The linear settings
re particularly interesting for method validation, as we compare to
nalytical solutions. The SMA settings are most representative for real
orld applications, as they resemble classical load–wash–elute cases.
he Langmuir setting is chosen to specifically challenge the numerical
ethods, as it causes steep concentration fronts, for which unstabilized
igh order methods typically struggle (Breuer et al., 2023). All prob-

lems were solved using relative and absolute time integrator tolerances
of 1 ⋅ 10−10 and 1 ⋅ 10−12, respectively. To reproduce the results, the
evaluation scripts have been made publicly available (Frandsen et al.,
2024). The CADET-Core version 4.4 from git commit 1572ca6 and the
CADET-Julia git commit a49a9ac were used for the benchmarks. For
each simulation setting, triplicates were run and the fastest runtime
was kept. All simulations were conducted on a Dell Latitude 7310 with
an Intel(R)-Core TM-i5-10310U 1.70 GHz processor and 16 GB RAM.
For the all the benchmarks in this chapter, we consider the MAE at the
column outlet. To this end, we computed high resolution numerical ref-
erence solutions using CADET-Core, which has been rigorously verified
by experimental order of convergence (EOC) tests e.g. using analytical
solutions for linear models and CADET-DG and CADET-FV mutually
erifying each other for non linear-models. Exceptionally, for the LRM
ith linear isotherm, the MAE was evaluated by comparing to an
nalytical solution (Javeed et al., 2013). As Breuer et al. (2023) showed

that the case studies were solved most efficiently using a minimum of
fourth order polynomials for the bulk phase, all benchmarks were con-
ducted with a minimum of fourth order polynomials for the bulk phase
discretization. Furthermore, Breuer et al. (2023) also demonstrated
that, in general, using collocation DGSEM was slightly more efficient
han exact integration DGSEM. Therefore, only collocation DGSEM was
sed for the benchmarks.

4.1. GSM vs. DGSEM for particle discretization

In this subsection, we investigate the performance of the GSM and
GSEM particle discretizations in CADET-DG. As mentioned before,

he GSM can be thought of as a single element DGSEM. The DGSEM,
owever, requires the computation of an additional auxiliary equation
o incorporate the second order derivative into the DGSEM frame-
ork (Bassi and Rebay, 1997). Accordingly, the GSM requires less
rithmetic operations to compute a polynomial approximation of simi-
ar accuracy compared to a single element DGSEM and is, in that case,
omputationally more efficient. This is confirmed in benchmark 1 for
 GRM with the SMA isotherm. For MAE down to 7 ⋅ 10−4 mol/m3, the

GSM discretization is the fastest. For more precise solutions, the DGSEM
discretization using two polynomials in the pore phase is faster. For the
linear and Langmuir isotherm case studies, the GSM discretization was
the fastest which is shown in Supplementary Material Figures S1–S2.
The DGSEM approach of Breuer et al. (2023) on the other hand allows
for non-equidistant resolution of the particles with arbitrarily spaced
5 
Fig. 1. Simulation time and maximum absolute error comparison between DGSEM and
GSM for particle discretization for the GRM with the SMA isotherm case study with
parameters found in Table S4. The bulk phase resolution was fixed such that the particle
discretization error dominates. The number of particle elements for the DGSEM was
fixed and the particle resolution was refined by increasing the polynomial degree. The
tests were run in CADET-DG.

elements. The computational advantage of the DGSEM is expected to
show if there is a specific part of the particles, e.g. near the boundary,
that should be resolved more accurately, or if we have strong gradients
in the particles, i.e. where the artificial dispersion via the numerical
fluxes between multiple elements is beneficial to stabilize the scheme.
For the settings considered in this work however, the GSM has shown
to be the fastest approach down to engineering precision, i.e., down
to MAE of 1 ⋅ 10−3 mol/m3 (Meyer et al., 2020), as we can see
.g. for the GRM SMA case in Fig. 1. For that reason, the GSM particle

discretization was implemented in CADET-Julia.

4.2. Baseline benchmark

In this subsection, the performance difference of CADET-Julia and
CADET-DG, that may arise due to the difference in code languages, is
investigated. To this end, we have mitigated all potential sources of
performance differences by using the same numerical methods. That is,
we used the same Sundials IDA time integrator, which is implemented
in C++ and called through a Julia interface. The Jacobians were
etermined analytically. To isolate the performance difference in code
anguages even further, no adsorption was considered for the LRM,
RMP and GRM case studies with parameters found in Supplementary

Material S1 Table S1. This ensures that different adsorption implemen-
tations would not influence the performance benchmark. Hence, this
baseline benchmark only considers convection and dispersion through a
porous column. For the GRM, the tests were carried out using fourth or-
der polynomials for the bulk phase at a varying number of DG elements
in the bulk phase and varying particle phase polynomials. For the LRM
and LRMP, the DG elements in the bulk and bulk phase polynomials
were varied. To solve the algebraic systems within the ODE solver,
CADET-Core uses a LU factorization (Guennebaud and Benoît, 2010),

hereas a KLU factorization was used in CADET-Julia (Hindmarsh
t al., 2005). Thereby, we remark that the linear solver used by the time

integration methods were not the exact same. Additionally, CADET-
Core utilizes Sundials version 3.2.1 (Leweke and von Lieres, 2018),

hereas CADET-Julia calls Sundials version 5.2.0.
Fig. 2 depicts the convergence per DoF for a GRM and shows the

ame errors for CADET-DG and CADET-Julia, thereby confirming the
mplementation of the methods.

The DoF and simulation time for the GRM case study are shown in
Fig. 3.
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Fig. 2. The degrees of freedom and the maximum absolute error for CADET-Julia and
CADET-DG using fourth order polynomials at various DG elements in the bulk phase
or collocation DGSEM. The number of bulk phase elements was gradually increased

(doubled, starting with 1 element). The sundials IDA time integrator was used. The
ase study is the GRM with parameters shown in Supplementary Material S1 Table S1.
ote that the CADET-DG and CADET-Julia graphs are overlapping.

Fig. 3. The degrees of freedom and the simulation time for CADET-Julia and CADET-
G using fourth order polynomials at various DG elements in the bulk phase for
ollocation DGSEM. The number of bulk phase elements was gradually increased
doubled, starting with 1 element). The sundials IDA time integrator was used. The
ase study is the GRM with parameters shown in Supplementary Material S1 Table S1.

Fig. 3 shows that CADET-Julia is faster for a small number of
DoFs. At increasing DoFs, CADET-DG scales significantly better than
CADET-Julia. Using more than 300 DoF, CADET-DG becomes faster
than CADET-Julia for this case study. The relatively poor scaling of
CADET-Julia was also observed for the LRMP and LRM case studies
which are shown in Supplementary Material S3, Figures S3–S8.

4.3. Time integrators CADET-Julia

In this subsection, different time integrators for ODE problems,
as covered in method Section 3.2, are compared to find the fastest
time integrator for the settings considered here, with implications on
general chromatography problems. To this end, we study both, linear,
highly non-linear and specifically stiff settings. The computational
performance is investigated for multiple spatial resolutions, and time
integration tolerances are chosen so that the spatial discretization error
6 
Fig. 4. The simulation time and the maximum absolute error for Julia ODE time
integrators on a log–log plot evaluated at fourth order polynomials. The number of bulk
phase elements was gradually increased (doubled, starting with 2 elements). The case
study is the LRM with the Langmuir isotherm with parameters found in Supplementary
Material S1 Table S3. For the FBDF, QNDF and QBDF, the Jacobian was determined
sing the FD for the different time integrators. For _jac, the Jacobian was determined
nalytically. For _prec, a preconditioning function was provided to the time integrators
nd for _precjac, a preconditioning function was provided to the time integrator and
he Jacobian was determined analytically.

dominates such that the performance for a specific MAE is bench-
marked. For each solver, we have tested four modes for the Jacobian
computation and factorization: We either provide the analytical Jaco-
bian to the solver or we let it calculate the Jacobian via FD. For both
modes, we tested the solver with and without the computation of a
preconditioning for the Jacobian factorization. As a note, the IDA DAE
solver was excluded from time integrator benchmarks because of the
poor scaling, see Fig. 3.

Throughout all the benchmarks, which are given in the Figs. 4–5
and in supplementary material section S4, Figures S9–S14, the FBDF
solver performed worse than the QNDF and QBDF solvers. Generally,
the QNDF solver exhibited the best performance which is also shown in
Fig. 5 for the GRM with the Linear isotherm. For some case studies, the
QBDF solver showed similar efficiency to the QNDF solver, usually for
low discretizations and only for few settings. Moreover, all the solvers
seemed to scale very well compared to for example the IDA solver, see
Fig. 3. For the LRM with the Langmuir isotherm case study shown in
Fig. 4, there was a difference in convergence between the ODE solvers.

ere, the FBDF actually converged to a lower MAE compared to the
NDF and QBDF solvers.

Providing the analytical Jacobian did not reduce the simulation time
significantly. This is unexpected as providing the analytical Jacobian
sually decreases simulation time. However, for the QNDF and QBDF
olvers, the Jacobian is only updated if the Newton iteration is converg-
ng slowly, meaning the Jacobian is rarely updated (Shampine et al.,

1997). Likewise, preconditioning of the Jacobian was also expected
to reduce simulation time. For these case studies, the default option
for linear solver in Julia was specified, meaning the most suitable
linear solver was automatically chosen based on each individual prob-
lem. When preconditioning did not reduce the simulation speed, this
indicates that the linear solver, chosen by the solver algorithm, did
not use the preconditioning. Since the difference between using the
analytical Jacobian and determining the Jacobian using FD is insignif-
icant, this suggests that determining the Jacobian is not contributing
significantly to the overall simulation time for QNDF and QBDF ODE
solvers. Additionally, providing the analytical Jacobian led to a lower
MAE convergence in only one of the case studies. Furthermore, not
being required to derive the analytical Jacobian makes it simpler to im-
plement new models. It can be very tedious or even impossible to derive

the analytical Jacobian, especially when dealing with complex models.
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Fig. 5. The simulation time and the maximum absolute error for Julia ODE time
integrators on a log–log plot evaluated at fourth order polynomials. The number of
bulk phase elements was gradually increased (doubled, starting with 2 elements). The
case study is the GRM with the Linear isotherm. For the FBDF, QNDF and QBDF,
he Jacobian was determined using the FD for the different time integrators. For
jac, the Jacobian was determined analytically. For _prec, a preconditioning function

was provided to the time integrators and for _precjac, a preconditioning function was
provided to the time integrator and the Jacobian was determined analytically.

Then, not having to derive and implement the analytical Jacobian can
speed up the implementation of new models. Thus, for the next sub-
section, the QNDF ODE solver is used and the Jacobian is determined
using FD. For a single simulation, the difference in the magnitude of the
simulation time is not significant. However, in applications requiring
many iterations, such as optimization or Monte Carlo simulations, or
in more complex chromatography setups involving multiple columns,
the cumulative difference in simulation time based on the ODE solver
becomes significant.

4.4. Ultimate performance benchmark

In this subsection, the most performant solver choices for CADET-
ulia were benchmarked against CADET-FV and CADET-DG. Thus, in
ADET-Julia, the models were solved as ODE problems by approximat-

ng the rapid equilibrium, Eq. (4b). The QNDF ODE solver was used
ith the Jacobian determined using FD. For the GRM benchmarks,

fourth order polynomials in the bulk phase were used, and the number
f DG elements in the bulk phase and the order of the particle phase
olynomials were varied. For the LRM and the LRMP benchmarks,
he number of DG elements in the bulk phase and the order of the
ulk phase polynomials were varied. For the GRM with the SMA
sotherm case study, the concentration profiles at different bulk phase
G elements are shown in Fig. 6.

Fig. 6 shows the concentration profiles of the proteins at the outlet
using one and four DG elements for the bulk phase. Using one DG el-
ement is insufficient as the concentration profile displays non-physical
behavior by simulating negative concentrations. Such non-physical
ehavior disappears when increasing the number of DG elements as

seen when using four DG elements. The Simulation time and MAE for
CADET-Julia, CADET-DG and CADET-FV are shown in Fig. 7.

Fig. 7 shows that CADET-Julia performs slightly better than CADET-
DG and significantly better than CADET-FV. As expected, as the spa-
tial methods are the same and dominate the error, we observe the
same convergence behavior for CADET-DG and CADET-Julia, however,
CADET-Julia is a factor two times faster for this case study.

For the LRM with the Langmuir isotherm case study, the simulated
concentration profiles are shown in Fig. 8.

Fig. 8 shows that using too few DG elements, the solution oscillates
nd even yields negative concentrations. This is especially present at
wo DG elements. Increasing the number of DG elements decreases the
7 
Fig. 6. Outlet concentration profiles for component 1,2 and 3 using one and four DG
elements and fourth order polynomials for the bulk and particle phase. The case study
is the GRM with the SMA isotherm with parameters found in Supplementary Material
S1 Table S4.

Fig. 7. Simulation time and maximum absolute error comparison between CADET-FV,
CADET-Julia and CADET-DG evaluated for various particle phase polynomial degrees,

𝑝
𝑑 , and fourth order bulk phase polynomials. The number of bulk phase elements was

radually increased (doubled, starting with 1 element). The case study is GRM with the
MA isotherm case study with parameters found in Supplementary Material S1 Table
4.

Fig. 8. Outlet concentration profiles for component 1 and 2 using two and eight DG
elements and fourth order polynomials for the bulk and particle phase. The case study is
the LRM with the Langmuir isotherm with parameters found in Supplementary Material
S1 Table S3.
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Fig. 9. Simulation time and maximum absolute error comparison between CADET-FV,
CADET-Julia and CADET-DG evaluated for various particle phase polynomial degrees,

𝑝
𝑑 , and fourth order bulk phase polynomials. The number of bulk phase elements was

radually increased (doubled, starting with 2 elements). The case study is LRM with
he Langmuir isotherm case study with parameters found in Supplementary Material
1 Table S3.

oscillations and reduces the magnitude of the negative concentrations,
owever, eight DG elements are still not sufficient to get rid of non-

physical behavior. Though non-physical, this is in accordance with
revious observations for the same case study (Breuer et al., 2023).

The MAE and the runtime for different bulk phase polynomials and DG
lements are shown in Fig. 9.

Fig. 9 shows that CADET-Julia is faster than both CADET-DG and
ADET-FV, using both the default (QNDF) and FBDF ODE solver.
owever, at MAEs lower than 6 ⋅ 10−4 mol/m3, CADET-Julia stops
onverging and the MAE stops decreasing when using the QNDF solver.
or that reason, the FBDF solver was also used for this case study as

Fig. 4 showed that FBDF converged to lower MAEs. When using the
FBDF solver, the MAE follows the same as for CADET-DG except for
he last data point at 𝑁𝑏

𝑑 = 6. The reason why the last data point does
not match the MAE is not clear. Likewise, it is not clear why the QNDF
stops converging at MAEs lower than 6⋅10−4. However, the convergence
struggles for this case study are caused by the time integrator. Also,
solving the models down to a MAE less than 1⋅10−3 mol/m3 is sufficient
for most engineering purposes. CADET-Julia also struggled to solve the
LRM with the SMA isotherm case study efficiently. Using the FBDF,
QNDF or QBDF ODE solvers resulted in severe non-physical oscillations
of the solution. Manually changing the linear solver to different options
also did not remove the oscillations. As suggested by Shampine et al.
(1997), reducing the maximum order of approximation of the ODE
solver to increase stability also did not help on the stability issues for
this case study. Instead, only the Sundials CVODE-BDF solver from the
Sundials.jl library was able to solve the problem without non-physical
oscillations. The MAE and the simulation time for the LRM with the
SMA isotherm case study are shown in Fig. 10.

Fig. 10 shows that CADET-Julia does not scale well compared
to CADET-DG. As for the Baseline benchmark study in Section 4.2,
where the poor scaling of the Sundials IDA DAE solver in Julia was
demonstrated, the Sundials CVODE-BDF also does not scale well for
this case study. The reasons for the poor scaling are probably the same
as for the Sundials IDA solver in Julia, as discussed in Section 4.2. That
being said, CADET-Julia performs satisfactorily way below engineering
precision of 1 ⋅ 10−3 mol/m3 for the MAE (Meyer et al., 2020).
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Fig. 10. Simulation time and maximum absolute error comparison between CADET-FV,
CADET-Julia and CADET-DG evaluated for various particle phase polynomial degrees,

𝑝
𝑑 , and fourth order bulk phase polynomials. The number of bulk phase elements was

radually increased (doubled, starting with 2 elements). The case study is LRM with the
MA isotherm case study with parameters found in Supplementary Material S1 Table
4.

The results of the remaining case studies can be found in Supple-
entary Material S5, Figures S15–S26. A summary of the performance
ifferences for the different case studies is given in Table 1.

As seen in Table 1, CADET-Julia generally gives great advantage
in terms of simulation time. The QNDF solver struggled with very stiff
problems as for LRM with the Langmuir isotherm and the LRM with
SMA isotherm case studies, but for the rest of the case studies, CADET-
Julia gave the same convergence as CADET-DG at faster simulation
times. At MAEs approaching 1 ⋅10−8, the convergence stops for CADET-
Julia i.e. the MAE does not decrease further at increasing DG elements
beyond that error. The reason for this is that the rapid equilibrium
is approximated by Eq. (4b), i.e. by multiplying the whole isotherm
expression with a constant of 1 ⋅ 108, which becomes the limiting
factor. This behavior can be observed for some of the case studies, see
Supplementary Material S5. Furthermore, CADET-Julia offers enhanced
flexibility in terms of implementing new models. The ease of imple-
mentation is particularly evident as it is not required to provide any
information about the Jacobian. Not being required to derive the ana-
lytical Jacobian, simplifies implementing new models. Furthermore, the
limited code base of CADET-Julia (compared to CADET-Core) comes
with a reduced compilation time which eases the implementation and
troubleshooting of new models, thereby enabling rapid prototyping.

To evaluate why CADET-Julia is generally faster than CADET-DG,
the differences between the two implementations can be pinpointed.

1. CADET-Julia solves an ODE problem whereas CADET-DG solves
a DAE problem.

2. CADET-Julia uses the QNDF ODE solver while CADET-DG uses
the Sundials IDA solver.

3. CADET-Julia and CADET-DG have a different order of state
vector, see Section 3.3.

4. CADET-DG is a large system solver with numerous functionali-
ties whereas CADET-Julia has fewer functionalities.

5. CADET-Julia is written in the programming language Julia
whereas CADET-DG is written in the programming language
C++.

6. CADET-Julia automatically chooses a linear solver whereas
CADET-DG uses LU-factorization.
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Table 1
Summary of CADET-Julia performance. The Avg. speed up is the average speed up of CADET-Julia compared to CADET-DG, computed from all spatial resolutions for each
setting.

Transport model Isotherm model Avg. Speed up Comment

LRM
Linear 9.4 Good convergence, fast simulation time.
Langmuir 9.6 CADET-Julia struggled to converge to MAE below 6 ⋅ 10−4 mol/m3, see Fig. 9
SMA 2.0 Native Julia ODE solvers yielded oscillatory solutions. CVODE_BDF was used, see Fig. 10

LRMP
Linear 2.4 Good convergence, fast simulation time.
Langmuir 1.9 Good convergence, fast simulation time.
SMA 2.8 Good convergence, fast simulation time.

GRM
Linear 3.5 Good convergence, fast simulation time.
Langmuir 2.2 Good convergence, fast simulation time.
SMA 1.8 Good convergence, fast simulation time.
c
F

p
a
o
h
m
f
m
s
C
t

7. CADET-Julia has a slightly different SMA implementation com-
pared to CADET-DG.

These differences between the two implementations contribute to why
CADET-Julia is faster than CADET-DG. Solving a DAE compared to an
ODE system is generally more challenging numerically (see e.g. Hairer
and Wanner (1996)), which often shows in the respectively required
computational effort. Moreover, the order of the state vector (see
q. (21)) influences both the computation of the residual and the

sparsity pattern of the Jacobian. In CADET-Julia, the DGSEM operations
in the residual are expected to be faster as the required data are
stored continuously in the state vector. Additionally, the CADET-Core
Jacobian implementation contains more fill in zeros, resulting in a
wider non-zero pattern around the main diagonal of the Jacobian which
influences the performance of the factorization. Furthermore, the QNDF
solver is very efficient and has demonstrated to be more efficient than
the Sundials CVODE-BDF solver (SciML, 2021). For large arrays of
equations, a general pattern of preference for the QNDF solver over the
Sundials CVODE-BDF solver was observed (SciML, 2021), which is con-
firmed in this study. Thus, the difference in time integrators between
CADET-Julia and CADET-DG is an important factor that can explain the
large performance difference between both software packages. Further-
more, the more streamlined code base of CADET-Julia also contributes
significantly to a speed up as the many functionalities in CADET-DG
may result in overhead on the simulation time. Moreover, CADET-Julia
automatically chooses a linear solver for the ODE problem whereas
CADET-DG uses a fixed LU-factorization method as linear solver. This
difference in linear solvers could also contribute to the performance
difference. In terms of the performance differences between program-
ming languages C++ and Julia, some studies suggest that Julia might
be slightly faster for some operations like matrix multiplication but not
fast enough to explain the relatively large differences between CADET-
DG and CADET-Julia in simulation time (Eschle et al., 2023). Regarding
the different SMA implementations, the speed ups for SMA case studies
align with the general speed up trend, meaning the differences in the
SMA implementation is probably not contributing significantly to the
differences in the speed up.

To further improve the performance of the CADET-Julia code base,
xtensive profiling of the code to identify and optimize performance
ottlenecks could be carried out. Moreover, different spectral numerical
ethods could be tested to find the most efficient one. To make the
ADET-Julia more robust by default, an automatic, adaptive algorithm
hat switches the ODE solver could be implemented. For instance, in
he LRM with the Langmuir and SMA isotherm case studies, the default
olver (QNDF) did not perform well. Hence, in those cases, an adaptive
lgorithm that switches to a more stable ODE solver by default would
nhance the robustness of the code base for solving chromatography
odels. Finally, the code base could be further developed to support
arallelization which could improve the computational performance

ven further.

9 
5. Conclusions

In this study, we have presented CADET-Julia, applied it to various
ase studies and benchmarked it against CADET-DG and CADET-FV.
rom these benchmarks, the following conclusions can be drawn.

1. The GSM for the particle phase was more efficient than DGSEM,
hence this was implemented in CADET-Julia.

2. To reveal the performance difference due to different program-
ming languages, the baseline simulations showed that CADET-
Julia was faster for smaller systems but CADET-Julia scaled
worse than CADET-DG.

3. Approximating the rapid equilibrium problems with a high ki-
netic constant (see Eq. (4b)), enabled to solve the problems
as ODE systems instead of DAE systems. This is an advantage
due to the many efficient ODE solvers implemented in Julia.
Furthermore, The QNDF solver was the most performant ODE
solver generally, but the solver struggled with solving very stiff
systems.

4. CADET-Julia was generally faster than CADET-DG for various
reasons, but the most important factor was probably the different
time integrators in each of the software packages.

This study has shown that CADET-Julia is an efficient and flex-
ible Julia package for solving chromatography models. Additionally,
CADET-Julia does not need any Jacobian information to rapidly com-
ute the solution. This work showcases the advantage of CADET-Julia
s a tool for rapid prototyping and experimentation: Conducting a study
n implicit time integration methods in CADET-Core, as performed
ere with CADET-Julia, is possible, but would have been remarkably
ore complex and time consuming. Whereas CADET-Julia is useful

or rapid prototyping, CADET-Core is an established code base with a
ore extensive model base and complex functionalities (e.g. parameter

ensitivities). For the shared models between CADET-Julia and CADET-
ore, it is possible to call CADET-Julia from CADET-Process if desired
o use the Julia code base.
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