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Gate-defined quantum dots are a promising candidate system for realizing scalable, coupled qubit
systems and serving as a fundamental building block for quantum computers. However, present-day
quantum dot devices suffer from imperfections that must be accounted for, which hinders the
characterization, tuning, and operation process.Moreover, with an increasing number of quantumdot
qubits, the relevant parameter space grows sufficiently to make heuristic control infeasible. Thus, it is
imperative that reliable and scalable autonomous tuning approaches are developed. This meeting
report outlines current challenges in automating quantum dot device tuning and operation with a
particular focus on datasets, benchmarking, and standardization. We also present insights and ideas
put forward by the quantum dot community on how to overcome them. We aim to provide guidance
and inspiration to researchers invested in automation efforts.

Background and motivation
Gate-defined semiconductor quantumdots are a candidate system to realize
scalable, coupled qubit systems that serve as a fundamental building block
for quantum computers1,2. Their potential for leveraging the semiconductor
industry’s materials science and fabrication techniques, while promising,
remains hard to realize at scale3. Specifically, current quantum dot devices
suffer from variations in the device dimensions and properties, as well as
defects. The correspondingdisorder in the electronic landscape throughout a
device can be overcomebyusing local gate voltages to tune the device into an
operation regime for quantum computing. However, even tuning a double
quantum dot device constitutes a nontrivial task, with each dot typically
being controlled by at least three metallic gates, each of which influences the
numberof electrons in thedot, the tunnel coupling to the outer leads, and the
interdot tunnel coupling, which are critical parameters for qubit operation.

The current practice of characterizing and tuning quantum dots for
qubit operation eithermanually or using script-basedmethods is a relatively
time-consuming procedure that is inherently impractical for scaling up and
applications. Moreover, with an increasing number of quantum dot qubits,
the relevant parameter space grows sufficiently to make heuristic control
unfeasible. To overcome the limitations of human-driven experimental
control, researchers working with semiconducting quantum dot devices
have put considerable effort into automating device control and
characterization4.

To date, several automated tuning algorithms for single- and double-
quantum-dot devices have beenproposed anddemonstrated.While initially
all efforts focused on developing in-house script-based algorithms that were
tailored to a particular device, more recently, members of the community
have begun to take advantage of the data analysis tools provided by the field
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of artificial intelligence and, more specifically, supervised and unsupervised
machine learning4. When provided with proper training data, machine-
learning-driven and machine-learning-enhanced methods have the flex-
ibility of being applicable to various deviceswithminimal to no adjustments
or retraining5. Moreover, by learning the governing rules and dynamics
directly from the data, such algorithms may be less susceptible to pro-
gramming errors.

However, machine learning models typically require large, labeled
datasets for training, validation, and benchmarking and often lack infor-
mation about the reliability of the output.Moreover, since the application of
machine learning to quantum dot tuning, characterization, and control is a
relatively new field of research, it lacks standardized measures of success.
The reported success rates vary significantly inboth the level andmeaningof
the reported performance statistics, making it hard (if not impossible) to
benchmark the proposed techniques against more traditional tuning
approaches or against one another4. The time is thus ripe to discuss the
broadly defined needs and potential next steps in the field of quantum dot
device automation that would enable substantive progress.

A simple but crucial component of success for the field will be to
solidify keymetrics of performance aswell as establish standarddatasets that
can be used to assess the performance of the newly proposed methods and
algorithms. Among the simple metrics that have been used to date are state
identification accuracy, defined as the probability of a classifier identifying
the right device topology, and tuning success, definedas theprobabilityof the
navigation algorithm getting to the right region of parameter space. How-
ever, more specialized metrics, and associated datasets, will be necessary to
leverage automation algorithms most effectively.

When it comes to datasets, most characterization and tuning efforts
undertaken to date rely on datasets that consist of either simulated data
(which may lack important features representing real-world noise and
imperfections) or manually labeled experimental data (which might be
subject to qualitative and/or erroneous classification). Moreover, with a few
exceptions, experimental datasets are not made publicly available. At the
same time, systematic benchmarking of tuning methods on standardized
datasets, analogous to theMNIST6 or CIFAR7 datasets, is a crucial next step
on the path to developing reliable and scalable autotuning algorithms for
quantum dot devices.

The goal of theWorkshop on Advances in Automation of Quantum
Dot Devices Control was to serve as a starting point for discussions
about the community’s needs and interests8. For two days, stakeholders
from industry, academia, and the government interested in research
and development of semiconductor quantum computing technologies
discussed methods of collaboration and future roadmap development
of methods for tuning large-scale devices. Topics discussed during the
meeting included:

• opportunities for research and development of tuning, characteriza-
tion, and control methods for semiconductor quantum dot devices;

• identifying barriers to near-term and future applications of the
autotuning methods;

• determining key performance metrics for the various aspects of the
tuning, characterizing, and controlling of quantum dot devices; and

• the need for facilitating interaction and collaboration between the
stakeholders to build a large open-access database of experimental and
simulated data for benchmarking new autotuning algorithms.

The workshop discussions, guided by a set of questions first put
forward in a Federal Register Notice published on April 13, 20239,
revolved around fivemain themes, whichwe depict in Fig. 1 and present
in the following sections. In terms of datasets and benchmarking, the
workshop participants were asked to identify public or restricted-use
datasets related to the various phases of tuning semiconductor quan-
tum dot devices that are available for training and benchmarking new
artificial intelligence models or to test hypotheses using data mining/
machine learning methods. They were asked to consider the work
researchers need to do to access, and then explore the quality of,
existing datasets before conducting research with them and to identify
what aspects of this work could be reduced or conducted just once so
that future researchers can reduce the time needed to complete a
research project. The workshop participants were also asked to con-
sider best practices for creating new datasets or linking existing datasets
and sharing them with researchers while adhering to local, State, and
Federal laws, as well as barriers and limitations that currently exist to
data sharing. Finally, they were asked to think about what role the
National Institute of Standards and Technology (NIST) can play in
developing infrastructure that supports the use of large-scale datasets
for research on tuning quantum dot devices.

Focusing on automation, the workshop participants were asked
to consider to what extent existing datasets capture enough infor-
mation to address research related to all aspects of tuning quantum
dot devices, to describe the research needs that are not being met by
the currently available datasets, and to identify additional data that
should be collected to address these research questions. They were
also asked to think about whether existing datasets, both simulated
and acquired experimentally, contain data that are valuable for
researchers and are of sufficient quality that research could be con-
ducted with a high amount of rigor. Part of the discussions revolved
around the promising approaches to testing and improving the
validity of performance metrics within large datasets, especially those
datasets that consist of experimental data that do not come with
ground truth labels.

Fig. 1 | Workshop thematic map. The workshop discussions revolved around five
main themes: science and policy challenges; guidelines for sharing data; developing
performance metrics; establishment of testbed and collaborations; and governance
and licensing. These themes are connected to allow the flowof data and information.
The end result is an infrastructure for facilitating the development, benchmarking,
and standardization of the quantum dot automation methods, where the science is

the driver (top row), the testbeds and collaborations are critical (bottom row), and
the governance (left box) and the guidelines (right box) take their inputs from the
science and provide useful help to the testbed and collaborations. For example,
theory, computation, and experiment provide a description of needs that can bemet
through testbeds and collaboration, the latter two of which are facilitated by gov-
ernance and guidelines.
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In addition to the overall comprehensive summary, each thematic
section of this report concludes with a set of core recommendations for
possiblenext steps for advancingautomationof thequantumdot tuningand
characterization.These recommendations donot represent an endorsement
by or an official position of NIST or any other agency participating in the
workshop. Rather, they should be understood as summarizing the plurality
of views from the workshop.

The core recommendations from the workshop are given here, and
substantiated in the following section:
A. Science and process challenges

1. The communitymust directly investigatemethods and approaches
for rapidly tuning increasingly large arrays in one and two
dimensions. To be robust, this examination must consider the
meaning and intent of success and failure of subroutines and sub-
processes in the tuning method, enabling learning for future
experiments when the tuning process as a whole fails.

2. The community must work together to ensure that measurement
approaches and techniques enable effective modeling in a stan-
dardized form. This should result in a series of interrelated, physics-
based models, such as capacitance relationships and multiband
Hubbard models.

B. Guidelines for sharing data
1. NIST could work with the community to define the ontology and

core guidelines under the FAIR (findable, accessible, interoperable,
and reusable) principles, along with a living process for improving
and revising these guidelines, to enable data sharing across the
community.

2. These guidelines would ideally be accompanied by a
community-enabling data-sharing service with core example
datasets and with an IP policy tailored to each of the datasets
that prioritizes sharing.

3. The community shouldwork todetermine additional sharingneeds
and the potential for a sharing collaborative network that enables
members to share data in a protected and secure manner.

4. As the community works on the above topics, it can benefit sub-
stantially by developing a few example datasets to test these
guidelines and sharing principles.

C. Performance metrics
1. Metrics should be developed in the context of specific tuning or

calibration routines and should be referenceable between different
devices and different groups by using standardized units where
possible, as well as standardized practices, such as the use of
virtual gates.

2. Given that different routines are at different levels of commonusage
and similarity, e.g., some phases of device tuneup might be nearly
ready for standardization while others are in an early development
stage, each should be treated according to its maturity and breadth
of acceptance and/or use.

3. Labeling of data should, where possible, be complemented with all
available physics or materials knowledge of the device(s) and
design(s) used in the measurement of the data to ensure that
quantitative understanding and systematic differences are properly
integrated into cross-device characterization. This device-level
information should be included in the metadata of the dataset.

D. Testbeds and collaborations
1. The community should develop and refine a prioritized list of

physical and engineering principles to center collaboration activ-
ities and identify needs for testbeds or other facilities. This could
follow thedifferent stagesof tuneup fromdevice characterization all
the way to high-fidelity, few-qubit operation.

2. Physical testbeds can be effectively complemented with model-
based test systems. Such virtual testbeds should have ease of use for
a wider community, and require experimental validation and
verification.

3. Testbeds and other systems using standardized approaches can
provide the foundation for a reference implementation of a com-
plete, scaling quantum dot system.

E. Governance and licensing
1. The community should establish a working group to oversee the

governance and licensing of datasets and to inform database
maintainers’ choices. NIST could act as a convener of this
working group.

Automation challenges
Science and process challenges
At a high level, quantum dot systems have a variety of engineering and
science challenges. However, the largest, pressing challenge is developing a
reliable path towards large arrays, in one or two dimensions (or other
geometries with scaling at least proportional to the linear size of the system),
of quantum dots that are tunable into the quantum coherent, few-electron
regime10.

An example of the challenge aheadwas characterized by the difficulties
of direct emulation of the Hubbard model. In 2019, Vandersypen and co-
authors demonstrated Nagaoka ferromagnetism in a small quantum dot
array with four dots11. This required building a Hamiltonian-level under-
standing of the device and maintaining the device in a narrow regime of
Hamiltonian parameters throughout the experiment. The time to tune up,
and retune, the device becomes a potential limiting factor for scaling to
larger numbers of qubits (or, in this case, Hubbard model sites).

This speaks to the underlying need for rapid characterization and
calibration processes that can be effectively interleaved with scientific data
gathering, and that can most efficiently move the setup towards the desired
regime. It also showcases the necessity of reducing the cost of tuning up
additional qubits, so that making larger arrays does not take polynomially
more time (in the absence of low-frequency noise) or, effectively, forever in
the presence of low-frequency noise.

At the same time, characterization and calibration rely upon an
understanding of the materials, the device design and geometry, the
experimental control systems, and the experimental measurement systems.
Thus, a related sub-challenge is providing physics- and materials-level
knowledge via typical calibration and characterization routines. For
example, pinch-off – the nominal voltage below which measurable current
will no longer flow even quantummechanically – is a key characteristic of a
gate in gated devices. Connecting the voltage of a gate to the local chemical
potential for the Fermi sea (i.e., setting a lever arm) is an essential calibration
step but today’s data gathering and storage typically uses reported values
(millivolts applied) rather than derived values (microelectron volts of che-
mical potential). Agreeing upon methods of estimating and storing the
connection between the device and derived values enables comparison
across devices and the creation of more standardized routines and more
standardized expected ranges of parameters, which can make datasets
interoperable.

A multi-physics modeling endeavor provides one path that could lead
to a robust and reliable approach to scaling. This approach uses a series of
interrelated models yielding a hierarchical set of relationships, from basic
semiconductor calibration tests to capacitancemodels and detectormodels,
to a multiband Hubbard model description of the few electron, many dot
regime. In many respects, each model used in this approach is partially
defined by the calibration or characterization experiment it seeks to
describe. Validating related models to create the larger, multi-physics effort
will necessarily require back and forth between experimental, theoretical,
and software and hardware engineering efforts.

The key benefit of this hierarchical set of models is the ability to
quantify the shared assumptions necessary to export and import calibration
and characterization processes and routines. The process of developing this
set of models also better informs the meaning and intent of the failure of a
particularmeasurementor step. Ideally, itwouldallow for shared techniques
and agreements about documentary standards such that multiple groups
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and/or companieswouldbe able to implement reference examples, aswell as
work on a dataset curated for benchmarking such reference
implementations.

Our specific recommendations:
1. The communitymust directly investigatemethods and approaches for

rapidly tuning increasingly large arrays in one and two dimensions. To
be robust, this examination must consider the meaning and intent of
success and failure of subroutines and subprocesses in the tuning
method, enabling learning for future experiments when the tuning
process as a whole fails.

2. The community must work together to ensure that measurement
approaches and techniques enable effectivemodeling in a standardized
form. This should result in a series of interrelated, physics-based
models, such as capacitance relationships and multiband Hubbard
models.

Guidelines for sharing data
Advances in the automation of the characterization and tuning of quantum
dot devices cannot happenwithout the joint effort of the whole community.
The development of specialized automation techniques, both machine-
learning- and non-machine-learning-driven, is at present stymied by the
lack of high-quality relevant datasets. Although some groups already share
their data using general-purpose open repositories such as Zenodo12 or
Open Science Framework13, such data is typically unlabeled and limited in
scope to include only the good data that was measured to create the final
version of the paper.While a lot of things can go wrong withmeasurement,
the negative counter-examples representing bad data (e.g., poor quality
measurement, measurements over incorrectly set parameters) or failure
modes are rarely made available. This makes it challenging to learn from
mistakes and results in multiple groups reproducing the same errors.
Moreover, in some groups, it is still a fairly commonpractice for researchers
to store data on private repositories and to make data available only upon
“reasonable request,” or to not share it at all.

While the initial data-sharing efforts indicate that there is interest
in both sharing the already acquired data and measuring new data, as a
community, we are far away from a standardized database that could be
used to develop and benchmark new and existing tuning methods. One
of the main obstacles on the path to establishing a comprehensive and
holistic database of quantum dot data is the lack of guidance on how to
facilitate such a process. A number of factors important for reusability
and reproducibility need to be considered to ensure that the resulting
databasemeets the needs of the community. These include the structure
of the individual data files, comprehensive data documentation, and the
inclusion of additional information related to the type of device used in
the experiment, data acquisition tools, pre-processing techniques, etc.
(contextual metadata).

A primary barrier that experimentalists in the community face is that
the development of control software, and even changing existing software
requires significant effort. Specifically, the software tools used to control and
measure the experimental devices vary between groups, from software
available commercially, such as Labber14, to open-access data acquisition
frameworks, such as QCoDeS15, to custom, in-house build packages. While
many software companies enable certain kinds of standardized measure-
ments, routines, anddataprocessing, the resultingdatafile structures arenot
consistent between groups. Even labeling the various gates in a device (e.g.,
plungers vs. barriers) is at present a local convention and may lead to
confusion when different groups try to use the same data for testing. Any
centralized scheme should consider that a data-sharing tool should be
almost automatic for researchers to consider transitioning from their cur-
rently custom and tailored data acquisition and storage tools to community
standards; only this can ensure widespread adoption. One solution that
could be implemented is to embed seamless and transparent data sharing
within the most commonly used sofftware frameworks (QCoDeS, Labber),
and to provide a module easy to integrate into others (for example, in
Python and/or Matlab).

Another challenge in data sharing is the inclusion of contextual
metadatanecessary to facilitate reproducibility. Even if all voltages applied to
all gates are saved, this information might be insufficient to replicate the
experiment. A lot of relevant information, such as the exact magnetic field
used in experiments, the temperature in the dilution fridge, or the tem-
perature in the room, is currently not captured by the automated mea-
surement routines and is thus typically missing from the data. At the same
time, a measured parameter range (e.g., two columns of voltages applied to
plunger gates) and the resulting device response (e.g., measured differential
conductance) are not enough to transfer the full information about the
experiment. It thus might be worthwhile to save the complete device setup
and a measurement history for the experiments as part of the metadata.

Establishing a centralized space where it would be easy for everyone to
upload and access the data is yet another aspect of data sharing that needs to
be addressed. First of all, the space dedicated to storing the quantum dot
database should provide an easy interface to upload and access the data.
Given the rapid development of programming languages, it is also impor-
tant that the data files are accompanied by minimal reproducible examples
of source code to load and preview the data that includes information about
the package requirements. Finally, the data should be easily accessible while
also stored securely to prevent any data corruption.

Given the above discussions, several core principles should be
encouraged for standardizing data. In addition to the high-level FAIR data
principles16,17, there are several additional requirements specific to experi-
mental data:
[T] Traceability
(T1) Clear connection between numbers in the data files and experi-

mental parameters.
(T2) Clear connection between the experimental parameters and the

device layout (gate on a micrograph), geometry, and scale,
including heterostructure information.

[A] Accessibility
(A1) Providing program files or documentation to enable others to use

the data.
(A2) Documenting libraries reacquired for using the data, including

version when applicable.
[S] Standarization
(S1) Using standard file formats for data storage.
(S2) Using standardized units that are clearly identified for each mea-

surement to store the data.
(S3) Using standardized and/or well-documented procedures.
(S4) Using standardizedmeasurement subsystems and/ormeasurement

techniques.
[C] Contextuality
(C1) Identifying measurement techniques and procedures used to

acquire the data.
(C2) Including metadata (e.g., magnetic field, the temperature in the

dilution fridge and of the electron gas, device configuration on gates
not actively measured).

(C3) Articulating the assumptions about results from preceding mea-
surements (what previous data does it depend upon).

(C4) Articulating the purpose of the measurement (what information
will it provide, what questions does it answer for future data).

(C5) Linking to (future) key qubit metrics such as readout and one- and
two-qubit gate fidelities, where possible.

The core recommendations from the workshop for sharing data and
building the quantum dot database are the following:
1. NIST could work with the community to define the ontology and core

guidelines under the principles of FAIR TASC, along with a living
process for improving and revising these guidelines, to enable data
sharing across the community.

2. These guidelines would ideally be accompanied by a community-
enabling data-sharing service with core example datasets and with an
IP policy tailored to each of the datasets that prioritizes sharing.
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3. The community should work to determine additional sharing needs
and the potential for a sharing collaborative network that enables
members to share data in a protected and secure manner.

4. As the community works on the above topics, it can benefit sub-
stantially by developing a few example datasets to test these guidelines
and sharing principles.

Performance metrics
A pivotal component of success for advancing the automation of quantum
dot device characterization and control will be to solidify key metrics of
performance and to establish standardized reference datasets that can be
used to assess them. Defining good performance metrics is a really difficult
task, especially in the earlier phases of tuning.

A few simple metrics, such as state identification accuracy (the prob-
ability of a classifier identifying the right device topology) and tuning success
(the probability of an optimizer or other navigation algorithm getting to the
right region of parameter space), have been used for the middle to later
stages of tuning18–24. The performance of fine-tuning and gate-tuning pro-
cesses is often assessed through the final fidelity of the qubit through, e.g.,
randomized benchmarking. Additional metrics for single-qubit operations
could be based on other experimentalmeasurements, such as the number of
visible Rabi oscillations, where more observed oscillations indicate superior
performance. Similar metrics, e.g., the quality of exchange oscillations,
should also be developed for two-qubit gates. However, defining more
rigorous quantitative and qualitative metrics and processes to assess the
expected overall performance of devices remains an open problem in the
field that will require the engagement of thewhole community. Focusing on
both single-qubit and two-qubit gate standardization will be necessary to
avoid calibrating an array of single qubits that can not talk to each other.
Once standardization is in place, more structured and algorithmic
exploration and improvement of the tuning processes can be achieved.

To date, there have been two approaches to testing the performance of
tuning algorithms: (i) direct deployment on experimental devices20,21,25,26

and (ii) using simulated device data27,28 for development and initial assess-
ment of tuning methods followed by testing on experimentally acquired
data or directly on experimental devices18,19,22–24,29,30. The benefit of using
simulated data is access to information about what the data represents (e.g.,
the exact charge occupation or the state of the device) as well as the ability to
facilitate a controlled study of how the various changes to the device design
or the types, combinations, and prevalence of noise impact the functioning
of the tuning algorithms. At the same time, simulation tools are not
equipped to cover all aspects of the tuning process and may not capture
some of the realistic experimental imperfections31,32.

While simulateddatamightbe a good startingpoint fordeveloping and
testing new tuning methods, for benchmarking combining synthetic and
experimental datasets might be a more appropriate approach. However,
unlike simulated data, experimental data does not come with labels, and
manual data labeling is not an easy task. It typically involves a team of
annotators, ideally, experts in the subjectmatter, who review eachdata point
and assign the appropriate label based on labeling guidelines and their
understanding of the data. The process can thus be very time-consuming
and labor-intensive, and result in sub-optimal labels due to the complexity
of the quantum dot data. Even the seemingly straightforward task of
determining whether a given charge stability diagram represents a good
double dot can be challenging as the quality goodmight have very different
meanings for different domain experts. Similarly, qubit-specific tuningmay
be required. For example, tunnel rates between dots are essential for two-
qubit gates single-spin qubits33,34 and even for individual qubit operation for
exchange-only35 or quantum dot hybrid qubits36, and the tuning of these
tunnel rates interacts with the optimum choice for gate voltage control
pulses. An example of this type of interaction is visible in so-called “fin-
gerprint plots” for the exchange-only qubit37. The development of a general,
systematic, unbiased, andpreferably automated labelingproceduremightbe
necessary if experimental data is to be included in a database intended for

benchmarking38. Such effort needs to be carried out as a collaboration
between computational, theoretical, and experimental groups to ensure a
satisfying performance of the resulting labeling software.

Inaddition to the label reliability, there is also thequestionabout the types
of labels that would be useful to the community. Researchers have different
needs for the labeling andusageofdata and, dependingonwhich tuningphase
a particular dataset is intended to support, different labeling schemesmight be
necessary. A lot of tuning aspects are specific to a particular experimental
setup, thematerial used to fabricate the device, and the device design.While in
some applications it might be sufficient to know the quality score for the data
(i.e., a binary good vs. bad pinch-off curve or charge stability diagram), others
might need labels that provide more detailed information such as category
(e.g., stability diagram capturing single vs. double quantum dot state; an exact
charge occupation), pixel categorization, or perhaps a graph. In addition to the
main categories, secondary labels could include some kind of score metric
concerning, for example, the noise level or type or measurement visibility.

Finally, complementary to the performance at the tuning phase level
different categories of device functionality also come with performance
metrics. The success of tuning in this context will depend on the objective of
a given experiment. Some of the categories worth considering include the
following:
• maintaining the same charge state on a quantum dot;
• stability of qubits tuned for single-and two-qubit operation within

desirable fidelity range; and
• stability of device parameters such as tunnel coupling or onsite energy

within a particular specification allowing to, e.g., perform interesting
simulations.

Standardized ways to characterize and label the experimental data are
crucial for the development of reliable and scalable tuning methods. The
core recommendations from the workshop related to performance metrics
are as follows:
1. Metrics should be developed in the context of specific tuning or cali-

bration routines and should be referenceable between different devices
and different groups by using standardized units where possible as well
as standardized practices, such as the use of virtual gates.

2. Given that different routines are at different levels of common usage
and similarity, e.g., somephasesof device tuneupmight benearly ready
for standardizationwhile others are in anearlydevelopment stage, each
should be treated according to its maturity and breadth acceptance
and/or use.

3. Labeling of data should, where possible, be complemented with all
available physics ormaterials knowledge of the device(s) and design(s)
used in the measurement of the data to ensure that quantitative
understanding and systematic differences are properly integrated into
cross-device characterization. This device-level information should be
included in the metadata of the dataset.

Testbeds and collaborations
For each critical calibration or characterization task, there is an opportunity
to define and refine the associated task in both experiments and theory. This
can occur in a focused manner through the use of dedicated facilities –
testbeds– that develop, refine, andmake such core techniques interoperable.

Critically, a testbed brings with it a set of approaches that are different
than typical experimental physics development. These include:
• documentation and training of shared techniques and approaches to

enable users to rapidly come up to speed on the system;
• shared code and databases to seed best practices and routines back into

the community;
• access to state-of-the-art quantum dot device chips and

instrumentation;
• rapid test and characterization capabilities, to fully explore a parameter

space; and
• community input into focus and use.
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We recognize that organizing a testbed facility specifically for a key
physics, material science, electrical engineering, software engineering, or
quantumcomputing goalmaybebothbeneficial andnecessary to ensure the
end-to-end operation of the system. For example, a testbed focused on rapid
material testing is likely to invest in a set of instrumentation and other
equipment that makes this testing effective but would be unlikely to be
suited for large-scale qubit experiments.

A key point developed in the course of discussions was the potential
benefit of a virtual testbed facility, validated from experimental data but
supportedby theoreticalmodel(s), such as themultiphysicsmodeldescribed
in the “Science and process challenges” section above. This virtual facility
could enable both online and offline testing of characterization routines and
calibration approaches against validated models, up to and including
potentially qubit physics, without requiring the underlying quantum
hardware. Such testing and comparison would, in turn, help identify the
most promising approaches that should be further developed to establish
best practices, as opposed to the current methods that remain mostly siloed
to individual groups.

The virtual testbed approach could complement existing programs
such as the Quantum Foundry program39 and the LPS Qubit
Collaboratory40. We wish to emphasize that a virtual testbed is only as good
as its access to and validation with experimental systems that are repre-
sentative of devices of interest. At the same time, the ability to make these
virtual systems widely accessible is clear, since software is cheaper than
hardware.

Over time, the development of testbeds can enable device standardi-
zation, which in turn will enable more effective modeling and the devel-
opment of the approaches necessary to enable robust and rapid scale-up.
Device standardization can also be complemented with routine and process
standardization. For example, one can imagine the creation of reference
implementations for the control and tuning stack, which enable research
teams and engineering teams to produce a starting, functional system from
which more complex future devices can be developed.

The key recommendations from this section include:
1. The community should develop and refine a prioritized list of physical

and engineering principles to center collaboration activities and
identify needs for testbed or other facilities. This could follow the
different stages of tuneup from device characterization all the way to
high-fidelity few qubit operations.

2. Physical testbeds can be effectively complemented with model-based
test systems. Such virtual testbeds should have ease of use for a wider
community, and require experiment validation and verification.

3. Testbeds and other systems using standardized approaches can pro-
vide the foundation for a reference implementation of a complete,
scaling quantum dot system.

Governance and licensing
Equally important as the data storage infrastructure is identifying an
organization, or a collaboration, that will lead the efforts. One possibility
would be to establish aworking group, i.e., a small group of experts invested
in the field of quantumdot characterization and tuning, whowould lead the
discussions and activities around building and maintaining the database.
Careful consideration needs to be given when deciding who should be the
governing body for the effort and how the initial members of the working
group should be determined. The priorities might be very different
depending on the type of organization leading the effort, particularly if it is a
commercial entity. For example, a hardware-focused company might have
different expectations regarding the resulting database than a more
software-focused one. They also might have very different organizational
rules. Choosing a neutral hosting site that isDOI referenceable, such as data.
gov, could be pivotal for bridging the gap between the different institutions’
capabilities and interests related to data sharing, ensuring a mutually ben-
eficial interaction, and minimizing the risk of potential conflicts of interest.

The initial objective of the working groupwould be towork together as
representatives of the larger community to develop a formal agreement

between industry, government, and academia that would guide the colla-
borative efforts. Such an agreement would settle the ground rules of
engagement in place, provide a quality standard for collaborations, clarify
intellectual property rights, and specify the license (or a set of licenses) under
which the data is shared. The best practices to ensure data safety, i.e., pre-
venting accidental loss or manipulation of the data, and data security, i.e.,
preventing intentional theft or manipulation, also need to be a part of the
agreement. New partners interested in joining the collaboration would be
required to review and agree to comply with the terms of such a governing
document.

Creating common rules of engagement is critical given the different
goals and priorities that the partners within the collaboration might
potentially have for the effort. Thus, determining the desirable character-
istics of potential members of the working group is a key part of building a
successful team.Theoutcomeof aworking group, howquickly it achieves its
goals, and how inclusive it is all depend on the ground rules and attendees.
There are several things to consider when building a working group:

A clear vision of the goals. The working groupmembers need to be able
to distinguish between the objectives of the working group and their
personal or institutional preferences.
Subject matter expertise. Choosing members solely based on their
seniority within their respective institutions will not necessarily lead to
making progress on the working group’s mission.
Communication skills.Members of the working group need to be able to
communicate effectively and without invoking authority, especially with
those who might not share their perspectives.
Diversity and inclusion. Harnessing the expertise, knowledge, and
unique viewpoints of members from varying backgrounds to foster
creativity and lead to innovative solutions.

It is important to clearly set expectations aboutwhat being a part of the
working group entails and what is expected of future partners and colla-
borators regarding sharing versus using the data. In the case of the industry
partners, theremight be legal constraints put in place by funding agencies or
by the company’smanagement preventing researchers from openly sharing
the data. Being dependent on national and institutional priorities, certain
national laboratories andgovernment agenciesmight alsobe limited inwhat
data can be shared given the priorities that they have for their agency.
National (or even international) interests need to be considered in terms of
sharing or creating datasets. Moreover, partnerships with overseas institu-
tions might be constrained due to the involvement of U.S.-based research
institutions and companies with the military through funding by agencies
such as the Defense Advanced Research Projects Agency or the U.S. Army
DEVCOM Army Research Laboratory. At the same time, it would not be
helpful if only Europe or only theU.S. focused on these efforts – it should be
a collaborative effort where all interested parties have an opportunity to
contribute.

Another aspect critical to building a successful working group is
ensuring diversity in terms of experience (graduate students, postdoctoral
researchers, early career researchers, principal investigators), demographics
(ethnicity, race, gender), research focus (experimentalists, theorists, com-
putational scientists, engineers), and type of institution (government
laboratories, universities, private sector). The diversity of ideas, perspectives,
and backgrounds, often results in a muchmore creative solving of complex
problems than would be possible for individuals.

When choosing thedata-sharingplatform it is important to ensure that
both sides, i.e., thosewhocontribute and thosewhoaccess thedatabase, have
access to the data, making it very easy for everyone to share and reuse the
data. An excellent example of a digital ecosystem of openly available data
and supporting tools is theCommunityResource for Innovation inPolymer
Technology (CRIPT) platform – a partnership between the University of
Chicago, NIST, Massachusetts Institute of Technology, Dow Inc., and
Citrine Informatics41. CRIPT provides researchers working in polymer
science and engineering with easy access to a large database of polymer data
as well as a set of tools for interacting with the CRIPT platform. The
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EuropeanOrganization forNuclear Research (CERN)OpenData Portal42,43

and HEPdata44,45 which gives access to data produced through the research
performed at CERN are two examples of data-sharing platforms from high
energy physics. The Phase Field Community Hub46 provides a space where
the phase field practitioners and code developers can share code and
compare code output data using a standard set of metrics. These platforms
could serve as examples of successfully deployed data- and code-sharing
environments.

The last aspect of establishing a database that the working group needs
to consider is choosing a license (or a set of licenses) as well as clarifying the
intellectual property rights governing the use of the database. The database
terms of use need to be transparent about the data usage to ensure that users
contributing new data know what is happening with the data that is being
shared. It should explicitly state the users’ obligations as well as prohibited
uses.The expectations andattributionsneed tobe clearly outlined, especially
regarding new ideas coming out of the shared data. It needs to be made
explicit what will happen when the data is used for research and academic
purposes to elevate the concerns with sharing data and make it clear what
the benefits of sharing data are.

In the end, an overall understanding has to be reached about who
should be the driving force behind those efforts, what should NIST’s role be
(especially related to standards), andwho should form the backbone of such
a collaboration. Building a successful database has to start with an initial
agreement that will provide a guideline for the collaborative effort. If pro-
vided with clear guidelines, the researchers are willing to share their data,
start to collect additional metadata, and standardize their data storing
procedures. With centralized guidelines and a platform where it is easy for
everyone to upload the data, establishing a good dataset in a fairly short
amount of time – a big step forward for the quantum dot community – is
within reach.

TheWorkshop on Advances in Automation of QuantumDot Devices
Control serves as a starting point for discussions about establishing a
workinggroup to create a guidelineonhowtobuild the centralizeddatabase.
The core recommendation here is:
1. The community should establish a working group to oversee the

governance and licensing of datasets and to inform database main-
tainers’ choices. NIST could act as a convener of this working group.
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