001     1032505
005     20250129092354.0
024 7 _ |a 10.34734/FZJ-2024-06298
|2 datacite_doi
037 _ _ |a FZJ-2024-06298
100 1 _ |a Hader, Fabian
|0 P:(DE-Juel1)170099
|b 0
111 2 _ |a SpinQubit 6
|c Sydney
|d 2024-11-04 - 2024-11-08
|w Australia
245 _ _ |a Quantum Dot CSD Simulation and Automated Charge Transition Detection
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1732795762_22611
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a A scalable platform for quantum computing requires the automation of the quantum dot tuning process. One crucial step is to trap the appropriate number of electrons in the quantum dots typically accomplished by analyzing charge stability diagrams (CSDs), in which the charge transitions manifest as edges. Hence, it is necessary to recognize these edges automatically and reliably. Machine learning methods for this purpose require large amounts of data for training and testing. Therefore, we introduce SimCATS, a new approach to the realistic simulation of such data. It enables the simulation of ideal CSD data complemented with appropriate sensor responses and distortions. This enables us to investigate possible edge detection methods, train them with the simulated data, and carry out a quantitative and qualitative comparison on simulated and experimentally measured data from a GaAs and a SiGe qubit sample.
536 _ _ |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)
|0 G:(DE-HGF)POF4-5223
|c POF4-522
|f POF IV
|x 0
700 1 _ |a Fuchs, Fabian
|0 P:(DE-Juel1)176540
|b 1
700 1 _ |a Fleitmann, Sarah
|0 P:(DE-Juel1)173094
|b 2
700 1 _ |a Havemann, Karin
|0 P:(DE-Juel1)201385
|b 3
700 1 _ |a Scherer, Benedikt
|0 P:(DE-Juel1)173093
|b 4
700 1 _ |a Vogelbruch, Jan-Friedrich
|0 P:(DE-Juel1)133952
|b 5
700 1 _ |a Geck, Lotte
|0 P:(DE-Juel1)169123
|b 6
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 7
856 4 _ |u https://juser.fz-juelich.de/record/1032505/files/Quantum%20Dot%20CSD%20Simulation%20and%20Automated%20Charge%20Transition%20Detection%20%5BPoster%5D%5B2024%5D.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1032505
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)170099
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173094
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)201385
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)173093
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)133952
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)169123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5223
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21