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Abstract The number of studies investigating root
length has increased, particularly in the context of
root length measurements observed through win-
dows such as minirhizotrons and rhizoboxes. How-
ever, there are currently two obstacles constraining
their broader utility: (1) the absence of standardized
terminology or units for root length data, and (2)
the translation from two-dimensional (2D) to three-
dimensional (3D) data. Here, we delineate the funda-
mental disparities between root length measurements
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obtained from observation windows and via volumet-
ric soil sampling and propose the adoption of more
precise terminology to distinguish 2D planar (pRLD)
from 3D volumetric (VRLD) root length density
measurements. This differentiation should be accom-
panied with the use of standardized units and should
not endeavour to make blanket conversions between
dimensions unless this is supported by specific cali-
bration data.

Keywords Root length - Root length density -
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Standardizing terminology considering data
dimensionality

In recent years, two technological advances have dra-
matically enhanced the ability to collect root informa-
tion. Firstly, the establishment of large phenotyping
platforms now allows for semi- or fully automated
root imaging, often in high-throughput (Nagel et al.
2012; Rasmussen et al. 2020; Svane et al. 2019a;
LaRue et al. 2022; Nair et al. 2023). These include
diverse setups such as high-throughput rhizobox plat-
forms (Nagel et al. 2012), outdoor rhizoboxes with a
large soil volume (Rasmussen et al. 2020), root win-
dows installed vertically in-field (Vetterlein et al.
2021), and in-field minirhizotron facilities (Raju-
kar et al. 2022, Svane et al. 2019b; Cai et al. 2016).
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Secondly, deep learning approaches have enhanced
our ability to segment root structures from 2D
images, even from highly heterogeneous backgrounds
(Wang et al. 2019; Smith et al. 2020; Narisetti et al.
2021; Zhao et al. 2022; Baykalov et al. 2023); and
new open-source software tools (e.g. Smith et al.
2022) have made this technology readily available. As
a result of these developments, it is now possible to
acquire large numbers of high-resolution root images
(Svane et al. 2019a; Rajurkar et al. 2022) on which
high-throughput image processing pipelines can be
applied to segment roots and extract features with
minimal intervention by the user (Seethepalli et al.
2021; Bauer et al. 2022; Alonso-Crespo et al. 2023).
As these advancements in technology are poised to
accelerate the collection of root data, it has become
more urgent than ever before to agree and standardize
terminology and units. Precise, standardized termi-
nology is critical for researchers to compare ideas and
research findings, formulate new theories, pinpoint
research inquiries and collaborate across disciplines;
and is important in large-scale analyses like system-
atic reviews and meta-analyses, for which consistent
terminologies across studies are a key requirement.
The trait most often extracted from images is
root length. However, the term root length is com-
monly applied to various measurements from three-
dimensional (3D) volumetric soil samples to two-
dimensional (2D) windows, despite their differences.
To clarify the nature of their measurement, scientists
have included various descriptors such as visible
(Nagel et al. 2012; Bodner et al. 2019), projected
(Endo et al. 2019), or captured (Bourgault et al.
2022), signalling that their root length data was col-
lected from observation windows (Table 1). However,
these prefixes tend to describe the process of data
acquisition, rather than the fundamental 2D property
of the data. Another recurring term in the literature
is root length intensity (Machado and Oliveira 2003,
2005; Othman and Leskovar 2019; Leskovar and Oth-
man 2021; Table 1), which implies a certain quantity
per unit area. Presumably, its use stems from earlier
methods in which root length was determined by
counting the number of intercepts across a grid (New-
man 1966; Tennant 1975). This method was applied
to minirhizotron studies (Upchurch 1987) and the
count of intersections per gridline length has been
reported as root intensity (Thorup-Kristensen 2001).
Yet, the term intensity can also be used for the trench
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profile method (Bohm 1979). Here, infensity refers
to the number of root segments i.e. counts per unit
area (e.g. Bublitz et al. 2022) and the term is thus
ambiguous.

Apart from the dimensional properties of the data,
the observed root length itself is inevitably influ-
enced by the imaging dimensions. These can vary
substantially among approaches, for example, image
dimensions of minirhizotron studies in literature
vary between 2.43 cm? and 400 cm? (Cai et al. 2016;
Postic et al. 2019; Svane et al. 2019b; Rajurkar et al.
2022). Despite this influence of sample dimensions,
studies have often reported fotal root length, being
the cumulative length of all imaged roots (e.g. Lem-
ming et al. 2016; Bodner et al. 2019; Bourgault et al.
2022; Chiteri et al. 2022). However, there is no clear
differentiation between the total measured root length
and the total root length of the entire plant, which
can lead to confusion, as the imaged root length will
always be smaller because not all roots are visible at
the observation window (Kuchenbuch and Ingram
2002; Nagel et al. 2012; Alsalem et al. 2021). Con-
sequently, it would be more precise to explicitly refer
to root length in context of the sample origin i.e. the
root length [cm] that is visible within the image [cm?]
(Johnson et al. 2001). This implies standardizing root
length per unit of image area (cm cm™2), analogous
to the way root length data from soil coring is com-
monly standardized per unit of soil volume as root
length density (RLD [cm cm™)).

Following these considerations, we propose using
the term planar to describe a 2D sample origin,
resulting in planar root length (pRL [cm]) and pla-
nar root length density (pRLD [cm cm~2]) depending
on the property of interest (Table 2). Planar relates
to objects lying in a plane and thus fundamentally
describes a two-dimensional image environment.
Mathematically, a plane can exist in a 3D space, and
can be curved - corresponding to the surface of a
minirhizotron (which has zero Gaussian curvature).
Moreover, planar avoids ambiguity where other
potential terms or prefixes such as surface or area are
also found in other existing root system architectural
traits. We acknowledge the long history and sustained
use of root length density (cm cm™>) in 3D (volumet-
ric) sampling studies, emphasising that the use of
Root length density for data obtained from 2D images
should not be used. Where required, the prefix volu-
metric may be used for explicit distinction between
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Table 1 (continued)
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2003, 2005)

(Noor et al. 2022)

Minirhizotron

RLSD

mm cm—1

Root length surface density

(Postic et al. 2019; Lou-
vieaux et al. 2020)

mm cm—2

* raw data has been converted with a conversion factor based on the assumption that depth of view equals 1 mm (Garré et al. 2011); 2 mm (Brown et al. 2009; Liao et al. 2015;

Rajurkar et al. 2022); 2.5 mm (Xiao et al. 2020; Li et al. 2021; Gengt et al. 2023); or 3 mm (Sullivan and Welker 2005)

**raw data has been converted using a conversion factor

##*raw data has been converted by dividing the root length observed on the outside of a rhizotron by the volume inside the rhizotron

planar and 3D sample origins, giving volumetric root
length (VRL [cm]) and volumetric root length density
(VRLD [cm cm™?)).

Linking two-dimensional and three-dimensional
data

A major challenge of measuring root traits is how to
scale from the observed ‘subsamples’ to the entire
root system in order to understand the biological
function and plasticity of root systems. This challenge
may be particularly relevant for planar root traits due
to the different dimensions between the 2D observa-
tion and the 3D environment.

Some researchers have used conversion factors
to go from planar to volumetric root data, based on
geometrical considerations such as the depth of view
into the soil matrix (Taylor et al. 1970; Sanders and
Brown 1978; Brown et al. 2009) or the position of
the viewing plane with respect to the anisotropy of
3-dimensional root growth (van Noordwijk 1985).
However, we have not found any scientific valida-
tion for this approach, and we question whether this
straightforward conversion between two distinct
properties with different dimensions makes sense. A
large array of physiological processes and interac-
tions determine root growth and development in any
given soil environment. Further, the physical barrier
of an observation window can alter the root growth.
Consequently, conversion factors, would need to be
more complex than a simple, single factor per plant
or experiment to take the resulting variation into
account. Indeed, parameter calibrations have been
proposed for soil texture, plant species, root diameter,
environmental conditions and soil depth (Upchurch
1987; Box Jr and Ramseur 1993; Samson and Sinclair
1994; De Ruijter et al. 1996; Brown et al. 2009; Tay-
lor et al. 2014; Machado and Oliveira 2003; Bublitz
et al. 2022), although these rarely seem to be applied.

Two dimensional methods such as minirhizo-
trons or rhizoboxes will also introduce biases.
Firstly, the observation plane creates a physi-
cal obstacle for roots, which can trigger plas-
tic responses and change rooting patterns (Bohm
et al. 1977; Downie et al. 2015; Wahlstrom et al.
2015; Pandey et al. 2021). Further, the experi-
mental setup (e.g. angle of rhizobox (Nagel et al.
2012), pot size (Poorter et al. 2012) and genotype
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Table 2 Two varying root length density terms

Scientific term:

(volumetric) Root length density*

planar Root length density

Abbreviation: (v)RLD

Sample origin:

three-dimensional
3

Dimensionality:

Unit: cmcem™

Soil/substrate volume

pRLD

Planar surface (image,
observation window,
etc.)

two-dimensional

cm cm™2

*Since root length density (RLD) is a standardized term used for volumetric root length data (Atkinson 2001), we suggest the use of
RLD in purely volumetric sampling studies. The term volumetric root length density (VRLD) offers the possibility to explicitly dis-

tinguish volumetric and planar observations in the same study

(Correa et al. 2022) can influence what proportion
of the root system is visible against the transpar-
ent window, and can influence gravitropicity (Liao
et al. 2004), anisotropy (Chopart and Siband 1999)
and the distribution of roots along different diam-
eter classes (Pierret et al. 2005). As a result, root
length along an observation plane may not nec-
essarily be representative of roots growing in the
bulk soil. Note that our criticism relates primarily
to the attempts to convert planar data as volumet-
ric ones and not to the use of planar systems for
root observations.

Volumetric soil sampling poses challenges and
significantly underestimates root length, due to loss
of fine roots during washing procedures (Noordwijk
et al. 1985). Further, as with planar sampling volu-
metric sampling is affected by the sensitivity to spa-
tial variation (Burridge et al. 2020), and limitations in
image analysis techniques for scanned roots (Delory
et al. 2017). Similarly, 3D imaging techniques such
as X-ray CT, MRI, and neutron tomography have
resolution and quality limitations that can limit the
detection of fine roots (Vetterlein et al. 2021; Hou
et al. 2022). Thus, 2D sampling is likely to overesti-
mate fine root length, while 3D sampling is likely to
underestimate fine root length. These diverging biases
make conversion between 2D and 3D measurements
unreliable, as it is inherently difficult to account for
unobserved data.

Considering the above, any approach that uses a
simple conversion factor to transfer 2D data to 3D
information cannot be justified based on the current
knowledge and understanding of root system devel-
opment. Rather, we encourage scientists to collect
2D data and 3D data fogether to develop greater
understanding about how planar 2D observations

relate to plant root growth and function in a 3D
soil environment. Along these lines a few previous
studies have combined the minirhizotron method
and the core method (Gregory 1979; Upchurch and
Ritchie 1983; Heeraman and Juma 1993; Wahl-
strom et al. 2015) or the profile wall method with
volumetric sampling (Bublitz et al. 2022; Van-
steenkiste et al. 2014). Even if such data may not
lead to new procedures or factors to directly con-
vert between data dimensions, they should deliver
valuable insights into root system growth and func-
tion, and/or may assist with development of future
process-based models. Our suggested improved ter-
minology for root length measurements may sup-
port this endeavor by providing a clear framework
for the distinction between methods.

Conclusions

We propose adoption of the terms ‘planar root
length density (pRLD)’ and ‘volumetric root
length density’ (VRLD), depending on the meas-
urement context. This terminology provides a
direct link to the sample dimensionality (2D vs.
3D), which should prevent data misinterpretation.
At the same time, data normalization over the sam-
pling frame gives standardized units. Further, we
discussed challenges regarding translation between
different measures, dimensions, and scales. Trans-
lation between pRLD and vRLD data is complex
and system-dependent and misinterpretation of
data will arise from using simplistic conversion
factors to translate 2D measurement data into 3D
space.

@ Springer
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