001     1032539
005     20250203133220.0
024 7 _ |a 10.1016/j.scitotenv.2024.177517
|2 doi
024 7 _ |a 0048-9697
|2 ISSN
024 7 _ |a 1879-1026
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-06327
|2 datacite_doi
037 _ _ |a FZJ-2024-06327
082 _ _ |a 610
100 1 _ |a Mohammed, Gihan
|0 P:(DE-Juel1)191292
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Simulation of soil phosphorus dynamics and crop yield for organic and mineral fertilization treatments at two long-term field sites
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1732630402_28776
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The efficacy of phosphorus (P) based fertilizers is frequently compromised by soil dynamics that render much ofthe applied P unavailable for crops. This study aimed to: (i) validate a new P model's prediction of plant-availableP; (ii) analyze the effects of organic versus mineral fertilization on P availability and crop yield; and (iii) examinetemporal changes in P pools under various fertilization regimes. Data were collected from two long-term fieldtrials, Dikopshof and Bad Lauchst¨adt, in Germany, using organic (FYM), mineral (MIN), a combination of organicand mineral (MIX) fertilizers, and unfertilized treatments. The AgroC model, incorporating a new P module,accurately predicted P dynamics in cropped plots. At both sites, MIX presented the highest yield, P removal, totalP and available soil P. After 120 years of repeated P fertilization, simulations at Dikopshof revealed a positive Pbalance in MIN (11.1 % with observed 13 %) and in MIX (15 % with observed 15 %), but negative in FYM (- 4.9% with observed - 5 %). However, at Bad Lauchst¨adt, the P balance was negative in all treatments except in MIN(+1.04 %), indicating P depletion. Among crops, cereals showed the most variated yields, with P-use efficiencyranging from 50 % to 99 %, while sugar beet presented the highest P-use efficiency (up to 122 %). The lowest Papplication rates exhibited, FYM treatment, the highest P-use efficiency for all crops. Model pools were successfullylinked to field-measured soil P fractions using CAL and DGT methods, providing initial predictions ofvarious soil P fractions across different fertilization strategies.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Siebers, Nina
|0 P:(DE-Juel1)164361
|b 1
|u fzj
700 1 _ |a Merbach, Ines
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Seidel, Sabine J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Herbst, Michael
|0 P:(DE-Juel1)129469
|b 4
|u fzj
773 _ _ |a 10.1016/j.scitotenv.2024.177517
|g Vol. 957, p. 177517 -
|0 PERI:(DE-600)1498726-0
|p 177517 -
|t The science of the total environment
|v 957
|y 2024
|x 0048-9697
856 4 _ |u https://juser.fz-juelich.de/record/1032539/files/full_text.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1032539
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)191292
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)164361
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129469
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-19
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-19
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-10
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI TOTAL ENVIRON : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI TOTAL ENVIRON : 2022
|d 2024-12-10
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21