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Abstract

Temperature and water vapor are known to fluctuate on multiple scales. In this study 27 years of airborne measurements of

temperature and relative humidity from IAGOS (In-service Aircraft for a Global Observing System) are used to parameterize

the distribution of water vapor in the upper troposphere and lower stratosphere (UTLS). The parameterization is designed

to simulate water vapor fluctuations within gridboxes of atmospheric general circulation models (AGCMs) with typical size

of a few tens to a few hundreds kilometers. The distributions currently used in such models are often not supported by

observations at high altitude. More sophisticated distributions are key to represent ice supersaturation, a physical phenomenon

that plays a major role in the formation of natural cirrus and contrail cirrus. Here the observed distributions are fitted with

a beta law whose parameters are adjusted from the gridbox mean variables. More specifically the standard deviation and

skewness of the distributions are expressed as empirical functions of the average temperature and specific humidity, two typical

prognostic variables of AGCMs. Thus, the distribution of water vapor is fully parameterized for a use in these models. The

new parameterization simulates the observed distributions with a determination coefficient always greater than 0.917, with a

mean value of 0.997. Moreover, the ice supersaturation fraction in a model gridbox is well simulated with a determination

coefficient of 0.983. The parameterization is robust to a selection of various geographical subsets of data and to gridbox sizes

varying between 25 to 300 km.
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CNRS, Paris, France7
3Institute of Energy and Climate Research 8 - Troposphere, Forschungszentrum Jülich GmbH, Jülich,8
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Abstract17

Temperature and water vapor are known to fluctuate on multiple scales. In this18

study 27 years of airborne measurements of temperature and relative humidity from IA-19

GOS (In-service Aircraft for a Global Observing System) are used to parameterize the20

distribution of water vapor in the upper troposphere and lower stratosphere (UTLS). The21

parameterization is designed to simulate water vapor fluctuations within gridboxes of22

atmospheric general circulation models (AGCMs) with typical size of a few tens to a few23

hundreds kilometers. The distributions currently used in such models are often not sup-24

ported by observations at high altitude. More sophisticated distributions are key to rep-25

resent ice supersaturation, a physical phenomenon that plays a major role in the forma-26

tion of natural cirrus and contrail cirrus. Here the observed distributions are fitted with27

a beta law whose parameters are adjusted from the gridbox mean variables. More specif-28

ically the standard deviation and skewness of the distributions are expressed as empir-29

ical functions of the average temperature and specific humidity, two typical prognostic30

variables of AGCMs. Thus, the distribution of water vapor is fully parameterized for a31

use in these models. The new parameterization simulates the observed distributions with32

a determination coefficient always greater than 0.917, with a mean value of 0.997. More-33

over, the ice supersaturation fraction in a model gridbox is well simulated with a deter-34

mination coefficient of 0.983. The parameterization is robust to a selection of various ge-35

ographical subsets of data and to gridbox sizes varying between 25 to 300 km.36

Plain Language Summary37

Temperature and water vapor fluctuate in the atmosphere on different scales, from38

micrometers to thousands of kilometers. In this study we use airborne measurements of39

temperature and water vapor to study the spatial variability of humidity in the upper40

troposphere and lower stratosphere (UTLS). The observations are used to build a sim-41

ple modelling of water vapor distribution on scales from tens of kilometers to hundreds42

of kilometers, which is designed to be used in atmospheric general circulation models (AGCMs),43

the atmospheric components of Earth system models. This new modelling of water va-44

por fluctuations aims to increase the physical representation of cirrus clouds and aviation-45

induced cloudiness in AGCMs. The observed water vapor distributions are modelled with46

a beta distribution, whose parameters are completely determined as empirical functions47

of two major variables of AGCMs, the average temperature in a gridbox, and the aver-48

age water vapor in a gridbox. Overall, the modelled distributions fit very well those ob-49

served.50

1 Introduction51

Ice supersaturation is an ubiquitous phenomenon in the upper troposphere whereby52

the partial pressure of water vapor is higher than the saturation value with respect to53

the ice phase, thus being thermodynamically unstable (Gierens et al., 2012). Ice super-54

saturated regions (ISSRs) occur at temperatures lower than 273.15 K (0°C), with a life-55

time that can be as long as 24 hours (Irvine et al., 2014) and spatial scales that vary from56

tens of kilometers to a thousand of kilometers (Spichtinger & Leschner, 2016). Forma-57

tion, extent, and lifetime of ISSRs are affected by vertical motions associated with con-58

vective systems or extratropical cyclones as well as small-scale gravity waves and tur-59

bulence (Gierens et al., 2012; Kärcher et al., 2014). They are also strongly affected by60

the weather pattern, and thus highly vary in space and time (Lamquin et al., 2012). These61

regions are a prerequisite for the formation of persistent condensation trails created by62

aviation, which themselves have a significant impact on the climate (Schmidt, 1941; Ap-63

pleman, 1953; Lee et al., 2021). Indeed, aircraft fly in the upper troposphere and lower64

stratosphere (UTLS), a region where ISSRs occur frequently, but with a high spatial and65

seasonal variability (Spichtinger et al., 2003).66
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Natural cirrus can also form in situ in ISSRs. Although they play a major role in67

the radiative balance of the Earth, climate feedbacks involving such clouds are still un-68

certain (Ceppi et al., 2017; Kärcher, 2017; Hill et al., 2023). This feedback can be es-69

timated using atmospheric general circulation models (AGCMs), by simulating the changes70

in cloud radiative effect in a warming climate. One of the main and long-standing chal-71

lenge of current AGCMs is the accurate representation of the formation and evolution72

of clouds. As the spatial scale of cloud processes is much smaller than the size of an AGCM73

gridbox, they must be parameterized. AGCMs generally consider a distribution of wa-74

ter inside each gridbox, which may operate on the total water (e.g., Smith, 1990; Bony75

& Emanuel, 2001; Tompkins, 2002) or only the water vapor in the clear-sky part of the76

gridbox (e.g., Tiedtke, 1993; Tompkins et al., 2007; Muench & Lohmann, 2020). An as-77

sociated probability density function (PDF) can then be used to diagnose cloud prop-78

erties within a gridbox, by calculating the quantity of water inside the newly formed clouds79

as well as the corresponding fraction of the gridbox occupied by clouds. Indeed, all the80

water that is distributed beyond a given threshold called the condensation threshold is81

converted into cloudy water, and some properties of the formed clouds can also be in-82

ferred from the distribution. A diagnostic scheme generally uses a total water distribu-83

tion and diagnoses cloud amount and properties at each timestep. On the contrary, a84

prognostic scheme, which considers a balance of cloud formation and destruction terms85

at each timestep, often only requires a distribution of the water vapor in the clear-sky86

part of the gridbox.87

At temperatures higher than 273.15 K (0°C), all the water that exceeds liquid sat-88

uration can be considered to be instantly condensed into clouds through a saturation ad-89

justment process (Pruppacher & Klett, 2010). Therefore, the distribution of water va-90

por is easily separated into a clear and a condensed part, with the liquid saturation as91

a threshold. On the contrary, ice crystals can be formed within ISSRs from various pro-92

cesses and at various supersaturation levels. For example, in the so-called cirrus tem-93

perature regime below 235 K (−38°C), ice crystals can form through either homogeneous94

or heterogeneous nucleation (Kärcher, 2003). Which process is involved depends on the95

supersaturation level, the temperature, and the quantity and properties of the atmospheric96

aerosols. Homogeneous nucleation, which in this range of temperature refers to the ho-97

mogeneous freezing of solution aerosol droplets, occurs in the absence of ice nucleating98

particles (INPs) and if supersaturation is high enough. The supersaturation value above99

which homogeneous nucleation occurs, often referred to as the Koop’s threshold, depends100

on e.g., the ambient temperature, the aerosol particle size and activity, and their chem-101

ical composition (Koop et al., 2000; Gierens, 2003; Vignon et al., 2022; Baumgartner et102

al., 2022), but this threshold can be reduced to an approximate function of temperature103

only (Ren & Mackenzie, 2005). Heterogeneous nucleation, which here refers to hetero-104

geneous freezing of solution aerosol droplets, can nevertheless occur at supersaturations105

comprised between the saturation and the homogeneous nucleation threshold, depend-106

ing on the quantity and properties of INPs (Kärcher et al., 2022). There is therefore a107

continuous range of thresholds for condensation, instead of a single one as it is the case108

for temperatures higher than 273.15 K. A cloud formation parameterization thus requires109

the knowledge of the distribution of supersaturation to take into account a continuous110

range of potential condensation thresholds. The parameterization of the distribution of111

water vapor must therefore be as highly representative as possible of the true state of112

the atmosphere.113

Previous studies have focused on the distribution of humidity in the UTLS, from114

observations or simulations (e.g., Gierens et al., 1999; Tompkins, 2002; Reutter et al.,115

2020; Petzold et al., 2020). However, they characterize the global distribution of humid-116

ity and its dependence on the season, altitude or geographical location. In contrast, a117

parameterization in an AGCM is built from state variables of the model, such as tem-118

perature or specific humidity within each gridbox at each timestep, rather than season,119

altitude, latitude or longitude. Therefore, these distributions from previous studies are120
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of great help to evaluate the outputs of an AGCM, but are not adequate to design a new121

physically-based parameterization.122

This study thus aims to parameterize the fine-scale distribution of clear-sky wa-123

ter vapor from observations for AGCMs resolution scales, typically from 25 to 300 km.124

The only explanatory variables used in the parameterization are two of the prognostic125

variables of an AGCM, namely temperature and specific humidity. The objective is to126

build a sub-grid scale distribution which can be used for further parameterization de-127

velopment in such models. It is not straightforward that gridbox-averaged temperature128

and specific humidity are sufficient to faithfully and exhaustively represent the variabil-129

ity of water vapor within an AGCM gridbox. However, we refrain to use other variables130

than prognostic variables of an AGCM in order to build a cloud parameterization that131

does not depend on other physical parameterizations, which may introduce additional132

inter-dependencies, and, among prognostic variables, temperature and specific humid-133

ity are essential in explaining the origin of the variance of water vapor (Gierens et al.,134

2007).135

Most types of observations at high altitude, such as measurements from airborne136

campaigns or radiosoundings, are usually sparse temporally and geographically (Krämer137

et al., 2020; Wolf et al., 2023), which prevents deriving significant statistics at climate138

temporal and spatial scales. We use here the IAGOS (In-service Aircraft for a Global139

Observing System) observational product, which is composed of airborne measurements140

made in a wide geographical zone and provides data since August 1994, thus increasing141

considerably the statistical representativity of our results. IAGOS is a European Research142

Infrastructure for global observations of atmospheric composition from commercial air-143

craft (Petzold et al., 2015, 2017). It is composed of a few commercial aircraft equipped144

with multiple sensors, in particular humidity and temperature sensors. The main advan-145

tage of IAGOS is the large number of in situ measurements within the UTLS in all sea-146

sons, which we use to construct the distributions. Recognizing the importance of these147

data, Gierens et al. (1997) and Gierens et al. (2007) also used the IAGOS dataset to in-148

vestigate mesoscale distributions of humidity in the UTLS, but those distributions were149

not analyzed for AGCM parameterization purposes.150

The paper is structured as follows. In Section 2 we present the IAGOS dataset and151

the methodology we use to analyse the data. In Section 3 we present the distributions152

as observed by IAGOS and analyse their main properties, as well as the dependence of153

their standard deviation and skewness to the larger-scale temperature and humidity. In154

Section 4 we derive the parameterization and conduct sensitivity studies. Results and155

assumptions are discussed in Section 5, and Section 6 closes the paper with a summary156

and conclusions.157

2 Dataset and methods158

2.1 IAGOS dataset159

IAGOS measurements include concentrations of different gases (e.g., CO, O3, CO2,160

water vapor), aerosol, dust, cloud particles, and basic meteorological data. Two main161

datasets comprise IAGOS: MOZAIC (1994-2014) and IAGOS-CORE (from 2011). In our162

study, we use all available data in the 175–325 hPa pressure range from flights that took163

place between 1995 and 2021. Measurements are mainly performed in the mid-latitude164

Northern Hemisphere, especially in the North Atlantic corridor (Fig. 1), but we inves-165

tigate the spatial dependency of our results in Sections 3.3 and 4.4.166

The IAGOS measurements are not specifically made in clear-sky, and pre-2017 data167

lack differentiation between cloudy and clear-sky conditions. From 2017 onwards, a back-168

scatter cloud probe was installed on some aircraft, allowing for such a differenciation.169

About 5 % of those measurements sampled cloudy air at most (Sanogo et al., 2023). Be-170
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Figure 1. Number of measurements per box from the IAGOS infrastructure around the globe,

between 1995 and 2021. The boxes measure 2.5° in longitude and 1.3° in latitude. Note the

logarithmic scale.

cause this percentage is limited and that we can only differentiate clear- and cloudy-sky171

for a limited subset of the data, we assume that the measurements are all mostly rep-172

resentative of clear-sky conditions, and use all the available data to keep a high num-173

ber of measurements.174

2.2 Data processing175

Relative humidity and temperature are measured with the ICH (IAGOS Capac-176

itive Hygrometer) instrument, which consists of a capacitive relative humidity sensor and177

a platinum resistance sensor for the temperature measurement at the humidity sensing178

surface. Uncertainties stem from various sources, including instrumentation limitations179

and environmental conditions during data collection. The absolute uncertainty on tem-180

perature measurements is estimated as 0.5 K and the relative uncertainty on relative hu-181

midity w.r.t. liquid measurements as 5-6 % (Petzold et al., 2015; Rolf et al., 2023). The182

ICH samples relative humidity and temperature every 4 s, corresponding to about 1 km183

in flight. The temperature sensor has a time resolution of 4 s, however the humidity sen-184

sor has a time resolution which varies from 1 s at 300 K to 120 s at 210 K, the latter cor-185

responding to about 30 km in flight (Neis et al., 2015).186

As this study aims to investigate the variability of moisture on scales between 25187

and 300 km, the low time resolution of the humidity sensor is a major concern. To study188

the subgrid-scale distribution of water on scales as low as 25 km, the measurements must189

be independent on scales much lower than 25 km. Previous studies performed a running190

mean on the data to dampen the lag effect (e.g., Gierens et al., 2007). However, such191

an averaging process reduces the water vapor variability and smoothes out peaks in the192

data that correspond to realistic small spatial scales fluctuations. To address this prob-193

lem, we developed a reconstruction algorithm which partly solves the time resolution is-194

sue. The rationale of the algorithm is to reconstruct high-resolution data from the mea-195

sured data, which is shown to differ by a temperature-dependent exponential moving av-196

erage (Neis et al., 2015). Following Neis et al. (2015), the relationship between the time197

response of the sensor and the temperature is found using collocated measurements of198

reference high-resolution sensors that were conducted in specific dedicated campaigns199

for a few flights. The application of this reconstruction algorithm leads to a significant200

improvement of the data quality, as further detailed in Appendix A.201
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Figure 2. Illustration of the methodology used for grouping the data. Measurements from a

given flight (a) are grouped into batches of length Lbatch (b) and pooled into the corresponding

(T ,RHi) bin on the basis of their average values.

Data are then screened with different filters in order to remove unreliable values.202

The measurements are provided with a quality flag, and data for which temperature and203

relative humidity are not labelled as “good” or “limited” are discarded from the anal-204

ysis. The reconstruction algorithm is then applied to the time series of water vapor, which205

neither adds nor deletes any data point, and which is not affected by data gaps. Next,206

the measurements are screened to the 175–325 hPa pressure layer. Two additionnal fil-207

ters are then applied: (1) the first one removes data when the aircraft is climbing or de-208

scending too fast because we want statistics at a given pressure level, and (2) a second209

filter removes data for which there is less than 0.5 measurement per km available, to en-210

sure that statistics are significant enough. The dataset after screening is composed of211

60,304 flights, for a cumulative number of 257 million measurements. The time series of212

the measured relative humidity w.r.t. liquid is then converted into a time series of spe-213

cific humidity q, knowing temperature and pressure for each measurement.214

Each flight trajectory is then subdivided into batches of a fixed length Lbatch, set215

at 200 km (Fig. 2). These batches represent the approximate size of a typical gridbox216

of an AGCM, and the sensitivity of our results to Lbatch is investigated in Section 4.4.217

We compute the average temperature 〈T 〉 and average specific humidity 〈q〉 in each batch.218

Hereinafter, we will consider the variable 〈RHi〉, which we define such that:219

〈RHi〉 = 〈RHi〉 (〈T 〉, 〈q〉, 〈p〉) = 100 · 〈p〉 · 〈q〉
ε psat,i (〈T 〉)

, (1)

where ε is the ratio between the molar mass of water and that of dry air, psat,i is the sat-220

urated pressure w.r.t. ice (Sonntag, 1990), and 〈p〉 is the average pressure in the batch.221

We use 〈RHi〉 because it gives direct information about cloud formation and saturation.222

Since 〈RHi〉 is computed from 〈T 〉, 〈q〉 and 〈p〉 directly, 〈RHi〉 and 〈q〉 can be estimated223

from one another in an AGCM gridbox without further assumption.224

〈T 〉 is associated to the corresponding temperature bin j centered around T
j

with225

a width of 0.5 K [T
j − 0.25 K, T

j
+ 0.25 K], where T

j
varies from 200.25 to 254.75 K226
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Figure 3. Distributions of (a) specific humidity, (b) relative humidity w.r.t. ice, (c) liquid

saturation deficit for four bins of RHi (colored), and (d) observed and approximated ice supersat-

uration fractions when T is used to compute the saturation threshold for each humidity variable,

with T fixed to the 225 K bin.

for a total of 110 different bins. Similarly, 〈RHi〉 is associated with a humidity bin, whose227

average value and width depend on T
j
. When converted to relative humidity w.r.t. liq-228

uid, this k bin, centered aroung RH
k

l with a width of 2.4 %, is [RH
k

l − 1.2 %, RH
k

l +229

1.2 %], where RH
k

l varies from 1.2 to 106.8 % for a total of 45 different bins. The cor-230

responding binned average value is noted RH
k

i when converted to relative humidity w.r.t.231

ice.232

We retrieve the measurements of temperature and specific humidity for each batch233

and associate it with the binned average values T
j

and RH
k

i , hereinafter simply referred234

to as T and RHi. This is done for all batches in each flight, for all the flights in the dataset.235

The measurements are then used to calculate the distribution of humidity for each (T ,236

RHi) bin.237

3 Analysis of the distributions of water vapor in the UTLS238

3.1 Example of individual distributions239

We obtain distributions of specific humidity q, relative humidity w.r.t. ice RHi, and240

liquid saturation deficit sl, three humidity variables commonly used in cloud formation241

schemes of AGCMs for (T , RHi) bins. In this section, we illustrate the results for four242

values of average humidity covering a wide range, with T arbitrarily fixed to the 225 K243

bin. The distributions are analysed using their scale, which is quantified using standard244

deviation, and their shape, which is quantified by skewness.245

The scale and shape of the distributions for all three humidity variables highly de-246

pend on RHi (Fig. 3a,b,c). The standard deviations of the distributions of q, RHi, and247
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sl, vary from 0.001 to 0.04 g.kg−1, from 1 to 17 %, and from 0.02 to 0.03 g.kg−1, respec-248

tively. This concurs with the result obtained by Gierens et al. (2007) that additionally249

showed that, for a fixed RHi, standard deviation strongly depends on T (see their Fig. 7).250

However, the dependence of scale and shape to RHi is different for the three hu-251

midity variables. The standard deviation of the q distributions increases with RHi, and252

the skewness decreases but remains positive (Fig. 3a). The skewness of the RHi distri-253

butions also decreases, but reaches 0 around RHi = 80 % and becomes negative at higher254

values of RHi (Fig. 3b). The corresponding standard deviation increases, peaks and then255

decreases, with a maximum value also reached around RHi = 80 %. Contrarily to q,256

the distributions of sl show a decreasing standard deviation with increasing RHi, and257

a negative and decreasing skewness with increasing RHi (Fig. 3c).258

Those differences stem from local fluctuations in temperature, as pressure is fixed.259

From a modelling perspective, this implies that the choice of the humidity quantity has260

an impact on the cloud formation scheme, because the saturation threshold is usually261

computed using T . To further illustrate this, we calculate the approximated ice super-262

saturation fraction of each distribution of humidity using T instead of local T to com-263

pute the saturation threshold, as usually done in AGCMs (Fig. 3d). For low values of264

RHi, the approximated fraction is almost zero for all three humidity variables. However,265

for RHi > 70 %, the fraction computed using q distributions can be more than twice266

the one observed. This suggests that q is the less adapted humidity variable among the267

three to approximate ice supersaturation fraction in AGCMs. In the following sections268

we conduct the analysis using RHi.269

3.2 Statistics of the distributions270

To generalize our findings, we systematically study the distributions as functions271

of T and RHi. Fig. 4a shows how the 257 millions observations are distributed across272

the 4950 (T , RHi) bins. The highest numbers of measurements are found at low RHi,273

and are usually made in the lower stratosphere. Observations at RHi higher than 40 %274

are usually made in the upper troposphere or at the tropopause. The presence of very275

few data points above the liquid saturation curve highlights the uncertainties of the IA-276

GOS data, showing sometimes non-physical humidity values. In the following, we study277

the standard deviation and skewness of the distributions as a function of T and RHi. These278

statistics are computed for bins with more than 2516 measurements available, such that279

all the bins above the homogeneous nucleation curve are discarded.280

Standard deviation (σ) is a quadratic function of RHi for a fixed T , peaking around281

RHi = 70 % and falling to 0 % at RHi = 0 %, and to about 10 % at RHi = 110 %282

(Fig. 4b,d). At saturations higher than 110 %, the pattern of σ is noisier, yet increases283

with increasing RHi. The shape of the described pattern is the same for all values of T ,284

but the maximum of σ highly depends on T , ranging from 6 % at 205 K, to about 23 %285

at 245 K.286

Skewness is linear between RHi = 0 % and 110 % for a fixed T , decreasing from287

about 5 to a value between 0 and −1 (Fig. 4c,e). Its zero value is reached at about the288

same RHi value than the peak value of σ. For RHi > 110 %, the pattern of skewness289

becomes noisier, but reaches a plateau. The slope of the linear dependence of skewness290

to RHi does not depend on T , but its intercept does, decreasing by about 1 unit when291

T increases from 210 K to 245 K.292

3.3 Spatial sensitivity of the statistics293

The distribution of RHi highly depends on the pressure level relative to the tropopause294

and on the geographical zone considered (Reutter et al., 2020; Sanogo et al., 2023). As295

we aim to parameterize the distribution of RHi for an AGCM as a function of T and RHi296

–8–
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Figure 4. Number of measurements (a), standard deviation (b and d) and skewness (c and e)

of the distributions as functions of T and RHi. The first and second rows show the quantities in

the (T , RHi) plane, while the third row shows them as a function of RHi only, with T indicated

through the color scale. The saturation w.r.t. liquid (solid line) and homogeneous nucleation

(dashed line) threshold are plotted. Homogeneous nucleation depends on other than tempera-

ture so data points above the curve are not unphysical. The homogeneous nucleation threshold

plotted is the Ren and Mackenzie (2005) fit of the Koop et al. (2000) data.
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Figure 5. Standard deviation [%] of the RHi distribution per (T , RHi) couple, for the upper

troposphere (a), the lower stratosphere (b), the NH mid-latitudes (c), and the tropics (d). The

lines are the same as in Fig. 4.

only, we conducted sensitivity runs to check the dependency of our findings to the pres-297

sure and geographical zone by screening the IAGOS data to four different regions: the298

troposphere, the stratosphere, the North Hemisphere (NH) mid-latitudes, and the trop-299

ics. We call the base case the case with all the data. The troposphere and stratosphere300

measurements are screened using the chemical definition of the tropopause: the tropo-301

sphere is associated to ozone concentrations lower than 130 ppb, and the stratosphere302

to ozone concentrations higher than this value (Bethan et al., 1996; Gierens et al., 1999).303

We use the ozone measurements from IAGOS for the selection. The NH mid-latitudes304

are defined by the band of latitudes comprised between 40°N and 60°N, and the trop-305

ics by the band of latitudes comprised between 30°S and 30°N. We develop here the re-306

sults of this sensitivity study for standard deviation, but similar conclusions can be drawn307

for the skewness (not shown).308

For the troposphere, the NH mid-latitudes and the tropics, although the value of309

the peak has a lower amplitude than in the base case, the results are consistent with our310

previous findings (Fig. 5a,c,d) and the impact of such a screening is limited. Such a re-311

sult is a priori not obvious since the process at the origin of the humidification of the312

UTLS at mid-latitudes and tropics are not the same (Gierens et al., 2012).313

On the contrary, there is for the stratosphere an increase in standard deviation with314

increasing RHi, with no peak (Fig. 5b). The results are difficult to generalize, because315

there is a clear lack of data for most of the (T , RHi) space, and the uncertainty of the316

humidity sensor is larger in stratospheric air. This is however not a major issue, as our317

ultimate goal is to accurately simulate the formation of tropospheric clouds in AGCMs.318

–10–



manuscript submitted to JGR: Atmospheres

Table 1. Compliance of usual probability distributions to our four criteria. Criterion 1: tails

can be long. Criterion 2: skewness can be positive and negative. Criterion 3: the distribution can

be left-bounded. Criterion 4: moments can be analytically inverted.

Distribution law Reference example Criterion 1 Criterion 2 Criterion 3 Criterion 4

Dirac Lohmann and Kärcher (2002) X X X
Triangular Smith (1990) X X X
Uniform Tompkins et al. (2007) X X
Gaussian Muench and Lohmann (2020) X
Beta Tompkins (2002) X X X X
Generalized lognormal Bony and Emanuel (2001) X X X
Lorentz Gierens et al. (1997) X
Skew normal - X X
Weibull - X X X

4 Parameterization of the RHi distribution319

4.1 Fit of the distributions to a usual law320

The first step to parameterize the distributions is to find a distribution law which321

fits well the observations, and which has intrinsic properties that would make it suitable322

for an implementation in an AGCM. We define four criteria which are based on the re-323

sults found in the previous section and on other needs. The law needs to allow for a long324

tail (criterion 1). The law must allow both positive and negative values of skewness (cri-325

terion 2). The law needs to be bounded to the left to allow for a physical bound of RHi326

(criterion 3). An additional but fundamental criterion is that the moments of the dis-327

tribution can be analytically inverted, to allow for an implementation in a numerical AGCM328

(criterion 4). We test various distributions against our criteria in Table 1 and find that329

the most appropriate law is the beta distribution, which was already proposed by Tompkins330

(2002) to model total water distributions.331

The beta distribution is bounded to the left by a, and to the right by c. Its loca-332

tion parameter is loc = a, and its scale parameter is scale = c−a. The beta distribu-333

tion is further defined by two shape parameters p and q, so that its probability density334

function (PDF) is expressed as:335

Pp,q,a,c(RHi) = fp,q

(
RHi − a
c− a

)
/(c− a) (2)

with fp,q(x) =
xp−1(1− x)q−1

B(p, q)

and RHi ∈ [a, c]

where B is the beta function. The equations linking the mean, the standard deviation336

and the skewness of the beta distribution to its four parameters can be found in Appendix B.337

Each distribution associated with a bin (T , RHi) is fitted to a beta law, for which338

the parameters are found by minimizing the negative log-likelihood function. Addition-339

ally, the parameters are constrained to ensure that some of the requirements previously340

stated are met. The location parameter a must be greater than 0 %, so that no nega-341

tive value of RHi is permitted. The shape parameters p and q are arbitratily constrained342

to be lower than 50, so that the numerical computation of the PDF of the beta distri-343

bution does not use high-exponent values. In the following, the quality of the fit is eval-344

uated by computing each determination coefficient R2
fit,k between the cumulative den-345

sity function (CDF) of the observed and fitted distributions, for the kth bin of (T , RHi).346
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Figure 6. Cumulative density functions (CDF) of the observed distributions (solid lines and

light colors), the fitted distributions (dashed lines and medium colors) and the parameterized dis-

tributions (dotted lines and dark colors), for four values of RHi (colored) and T fixed to 225 K.

The observed distributions are the same as those shown in Fig. 3b.

It is more appropriate to fit the CDF than the PDF because in statistical cloud schemes,347

cloud formation, supersaturation, cloud water content, are estimated by the integration348

of the distribution of water vapor, which is the quantity provided by the CDF.349

The fit of the observed distributions to the beta law shows good agreement (Fig. 6;350

compare the solid and dashed curves). The determination coefficients R2
fit,k between the351

fitted and the observed CDFs are equal to 0.989, 0.997, 0.999 and 0.998 for the four val-352

ues of RHi presented, 17 %, 48 %, 82 % and 117 %, respectively. However, the skewness353

of the fitted distributions are underestimated for distributions with low standard devi-354

ations, as it is the case for the RHi = 17 % distribution. This is because of the con-355

straint on the scale parameters p and q, which limits the capability of the distribution356

to adapt its shape to match as much as possible the CDF. This difference between the357

observed and fitted skewness explains the lower R2
fit,k for the RHi = 17 % distribution358

than for the other three distributions. The determination coefficient R2
fit,k has a mean359

of 0.997, with a minimum value of 0.97, which depicts a very good agreement overall.360

4.2 Empirical formulation of the standard deviation and skewness361

In a next step, we seek to express the four parameters as functions of T and RHi362

in order to have a fully parameterized distribution. The location parameter a is fixed363

to RHi = 0 %, because its value was almost always 0 % when fitting the distributions364

(not shown). The four parameters can be formally expressed as functions of the aver-365

age, standard deviation and skewness (see Appendix B), and we express these statisti-366

cal measures as a function of T and RHi, instead of the parameters. The average is set367

to RHi so as to conserve the water vapor mass. We then construct empirical formula-368

tions of the standard deviation σ and skewness γ as functions of T and RHi, based on369

the analysis conducted in Section 3.2. The following paragraphs describe the empirical370

formulations, and Fig. 7 depicts them for four values of T 210, 225, 240 and 255 K.371

Following the analysis in Section 3.2, we parameterize the standard deviation σ as372

a quadratic function of RHi which peaks at RHi,max, for RHi lower than a threshold value373

RHi,0. For RHi > RHi,0, we assume a linear relationship between σ and RHi. This lin-374
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Figure 7. Empirical formulations of (a) the standard deviation and (b) the skewness as a

function of RHi for four values of T . In (a), the orange dots represent the points (RHi,max,σmax)

and the orange dashed line its dependence with temperature, while the green dot represents the

point (RHi,0,σ0). The dashed grey line illustrates the linear relationship of standard deviation to

the right of the green dot. In (b), the orange dots represent the cancellation points of skewness

(RHi,max,0), and the purple dots represent the points at the origin (0,γ0).

ear relation is drawn in Fig. 7a to the right of the green dot, and it is constructed fol-375

lowing the dashed grey line from the origin to the green dot. These different assump-376

tions lead to the following expression for σ:377

σ(T ,RHi) =

{
α(T )RHi(RHi − β(T )) if RHi ≤ RHi,0;
σ0RHi/RHi,0 if RHi > RHi,0.

(3)

RHi,0 and σ0 are constant values, which are represented by the green dot on Fig. 7a. α378

and β are two functions of T defining the quadratic part of σ. These two functions are379

determined by fixing σ(T ,RHi,0) = σ0 for all T , and by parameterizing the value of the380

peak of the curve σmax as follows:381

σmax(T ) = κv max
(
0, T − Tthresh

)
+ σ0, (4)

where Tthresh and κv are constant values. The values of RHi,max and σmax are represented382

by orange dots in Fig. 7a, and the orange dashed line. Tthresh is the temperature thresh-383

old below which σ shows no more peak, i.e., when the orange dot and the green dot over-384

lay. κv is the rate of increase of the peak value of σ with temperature, i.e., the rate at385

which the orange dot goes higher. The functions α and β, as well as RHi,max, can then386

be derived as:387

β(T ) =
2RHi,0

1 +
√

1− σ0

σmax(T )

(5)

α(T ) = −4σmax(T )

β(T )2
(6)

RHi,max(T ) =
β(T )

2
=

RHi,0

1 +
√

1− σ0

σmax(T )

. (7)

Again following the results of Section 3.2, we parameterize skewness so that it can-388

cels at a RHi value that also corresponds to the maximum of σ, RHi,max, which is rep-389

resented by orange dots on Fig. 7b. The linear dependence between skewness and RHi390
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Figure 8. Scatter plots of (a) the standard deviation (in %), (b) ice supersaturated fraction,

(c) fraction for which RHi is higher than 115 % and (d) fraction for which it is higher than 130 %

from the parameterized distributions (y-axes) versus the observed ones (x-axes).

is parameterized using Tthresh, because the lower the standard deviation, the lower the391

skewness (see Fig. 4). These assumptions lead to the following formulation for the skew-392

ness:393

γ(T ,RHi) = γ0(T )

(
1− RHi

RHi,max(T )

)
(8)

with γ0(T ) = κs max
(
0, T − Tthresh

)
, (9)

where κs is the rate of evolution of γ0, the skewness at RHi = 0 % with temperature.394

γ0 is represented with purple dots on Fig. 7b, falling to 0 if T is lower than Tthresh.395

4.3 Evaluation of the parameterization396

With these empirical formulations of the average, standard deviation, and skew-397

ness, the distribution of RHi is fully parameterized as a function of T and RHi. The value398

of the parameters Tthresh, RHi,0, σ0, κv and κs are obtained by fitting again each ob-399

served distribution to a beta law, but the four parameters p, q, a and c are now prescribed400

using the parameterization, with a being fixed. This means that instead of fitting each401

distribution with the four parameters of the beta law, all the distributions are now si-402

multaneously fitted with the five free parameters of the parameterization Tthresh, RHi,0,403

σ0, κv and κs. The resulting distributions from this new fit are called the parameter-404

ized distributions, and the fit minimizes
√

1
N

∑N
i (1−R2

par,k)2, where R2
par,k is the de-405

termination coefficient between the observed and parameterized CDF of the distribution406

for the kth bin of (T , RHi).407

The fits of the observed distributions to the parameterized beta law show good agree-408

ment (Fig. 6; compare the solid and dashed lines). R2
par,k has a mean of 0.997, with a409

minimum value of 0.917. This is lower than the minimum value of R2
fit,k which is 0.97,410

because some distributions, especially those corresponding to the edge of the (T , RHi)411

domain, are less well represented with the proposed parameterization. The values of the412

five parameters can be found in Table 2 (line “Base case”).413

The quality of the parameterization is also assessed by comparing the value of the414

observed and parameterized standard deviations, as well as the value of the observed and415

parameterized CDFs for three arbitrary values of relative humidity: RHi = 100 %, which416

represents the ice supersaturation fraction, 115 % and 130 %. The standard deviation417

σ is generally slightly underestimated, especially for high values of observed σ (Fig. 8a),418

which may have an impact on supersaturation cloud formation schemes for AGCMs, in419

particular for the representation of water content. On the contrary, ice supersaturation420

fraction and the fractions of RHi larger than 115 % and 130 % are much better captured421

(Fig. 8b, c, d). The determination coefficients R2 are 0.98, 0.96 and 0.91, respectively.422
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Table 2. Number of observations, values of the five free parameters of the parameterization as

well as mean and minimum value of R2
par,k, for the base and different sensitivity cases.

# obs. Tthresh [K] RHi,0 [%] σ0 [%] κv [%.K−1] κs [K−1] Mean R2
par,k Min. R2

par,k

Base case 257 M 216 115 10.8 0.192 0.0177 0.997 0.917
25 km-batch 259 M 205 85 3.8 0.038 0 0.998 0.986
50 km-batch 258 M 209 107 5.4 0.070 0 0.998 0.986
75 km-batch 258 M 210 110 6.4 0.104 0.0090 0.998 0.983
100 km-batch 258 M 210 110 7.2 0.124 0.0161 0.998 0.986
150 km-batch 257 M 216 117 9.0 0.201 0.0307 0.998 0.979
300 km-batch 256 M 210 110 11.9 0.189 0.0133 0.996 0.863
NH mid-latitudes 139 M 210 110 10.0 0.142 0.0048 0.997 0.951
Tropics 61 M 222 107 12.2 0.155 0.0018 0.995 0.841
North Atlantic 53 M 210 110 8.2 0.202 0.0354 0.998 0.923
Troposphere 105 M 220 116 10.3 0.275 0.0406 0.997 0.948
Stratosphere 74 M 186 200 1.7 0.355 0.0157 0.996 0.928
No clouds 40 M 210 110 11.0 0.145 0.0169 0.995 0.840

For ice supersaturation, the fraction is estimated with a maximum error of 0.1 in most423

of the cases. Fractions lower than 0.5 are slightly overestimated, and fractions higher than424

0.5 are slightly underestimated.425

4.4 Sensitivity of the parameterization426

We now assess the sensitivity of our parameterization to the length of the batches427

Lbatch and to further screening of the data by region or airmass property. We change Lbatch428

to simulate a change in the AGCM gridbox size, from 200 to 25, 50, 75, 100, 150 and 300 km.429

The regions used to screen the measurements are the tropics (30°S to 30°N), the North-430

ern Hemisphere (NH) mid-latitudes (40°N to 60°N), the North Atlantic (40°N to 60°N431

and 65°E to 5°E), the troposphere and the stratosphere. We also screen the clear-sky con-432

ditions measurements, using a threshold of Ni = 10−3 cm−3 for the minimum concen-433

tration of crystals defining a cloud, following Sanogo et al. (2023).434

When Lbatch varies from 25 to 300 km, the mean determination coefficient R2
par,k435

is always greater than 0.996 (Table 2). However, the quality of the fit strictly decreases436

with Lbatch, with a minimum R2
par,k going from 0.986 for a batch length of 25 km, to 0.863437

for 300 km. This indicates that the lower Lbatch, the better our parameterized distribu-438

tions simulate water vapor variability. κv and σ0 globally increase with Lbatch, mean-439

ing that the variability of water vapor is increasing with Lbatch. There is however no clear440

trend for Tthresh and κs, suggesting that large-scale dynamical processes are not the source441

or sink of skewness.442

Screening the data to specific regions does not significantly reduce the mean value443

of R2
par,k but it remains always very high, showing that the parameterized subgrid-scale444

distributions can simulate all the situations considered here. However, the parameters445

differ slightly when the measurements are screened for clear-sky condition than in the446

base case, suggesting that our assumption that all measurements are made in clear-sky447

may not be completely accurate.448
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5 Discussion449

5.1 Are IAGOS observations reliable and sufficiently robust to build a450

parameterization?451

We now discuss the potential limitations of our study, focusing on the capability452

of IAGOS observations to build a parameterization of the subgrid scale distribution of453

water vapor for an AGCM. This study has been conducted with the underlying assump-454

tion that the IAGOS dataset contains sufficient information to achieve our goal. How-455

ever, some limitations of IAGOS question this assumption. Gierens et al. (2007) argued456

that pooled data such as those used in this study cannot be directly employed in a sta-457

tistical cloud scheme, because each individual distribution (i.e., the distribution in one458

single batch) is mixed up in the resulting statistical distribution. They further argued459

that such data can only be used for validation. However, we think that if the initial ob-460

jective is well set, in particular if the variables we want our parameterization to depend461

upon are well defined, there is no such limitations to use observational data. What is rep-462

resented and what is hidden in the pooling process, and therefore in the parameteriza-463

tion, is not a result of the algorithm, but a decision as to which explanatory variables464

we want to use.465

The parameterization we have built could have also been derived from the output466

of high resolution models e.g., Cloud Resolving Models. Such models could help to pa-467

rameterize such a distribution, because they are resolved enough to study the mesoscale468

variability of water vapor, and low-resolved enough to consume a reasonable amount of469

resources per simulation. They have however their own limitations: for example, they470

rely on parameterizations of turbulence and cloud microphysics, which have their own471

deficiencies and uncertainties, particulary in extremely cold environements. Moreover,472

generalizing results for a wide range of temperatures and humidities, as done with the473

IAGOS dataset in this study, would still need a large number of simulations, large enough474

to become too computationnally expensive.475

AGCMs that use the distribution of water vapor to simulate the formation of new476

clouds assume that this distribution is representative of an atmospheric state that has477

not yet “experienced” condensation of the water vapor. However, if we see condensation478

as a fast process, real-world observations have, by nature, already experienced conden-479

sation and the distribution that we derive is more representative of an atmospheric state480

after than before condensation takes place. This means that distribution that we have481

derived needs to be slightly modified before it can be used in an AGCM. We address this482

issue by leaving free parameters in the parameterization which can be modified. We an-483

ticipate that up to five parameters can be left for tuning within some a priori range when484

the parameterization will be implemented in an AGCM.485

5.2 Technical limitations of IAGOS486

The IAGOS dataset consists of measurements made by in situ sensors, mounted487

on commercial aircraft. Operating commercial aircraft aims at maintaining the highest488

security level while minimizing the operating costs. This implies that aircraft avoid as489

much as possible convective regions, adopt trajectories that decrease the flight time, and490

perform other maneuvers that may bias the sampling of data. Most of all, flight paths491

are not well distributed around the globe (see Fig. 1). Therefore, measurements are bi-492

ased toward specific meteorological conditions and geographical regions, and our results493

cannot be representative of all the situations. The shape of the parameterized distribu-494

tion is relatively insensitive to the geographical region (see Section 4.4), but we cannot495

exclude the potential effect from a meteorological sampling bias.496

Additionally, in situ measurement are collected along 1-D lines in space. Nonethe-497

less, the parameterized distributions are meant to be used in 3D gridboxes. We there-498
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fore implicitly assume that the 3D variability is somewhat isotropic and fully character-499

ized with 1D transects.500

The limitations presented in this Section are inherent to the IAGOS dataset, and501

their associated biases can hardly be estimated. They can all modify the shape and scale502

of the humidity distributions studied. We assume that those biases have a low impact503

on the overall shape of the distributions and on the general evolution of skewness and504

standard deviation, as the sensitivity study shows almost no dependence to the geograph-505

ical and altitude region. However, having such biases means that the law used to fit the506

distributions, the empirical formulations found for the standard deviation and skewness,507

and finally the five parameters of the parameterization, are associated with uncertain-508

ties. We can account for a part of these uncertainties by providing ranges of plausible509

values for the parameters of the parameterization. With a modelling perspective, these510

ranges can be used to tune the AGCM using a framework such as proposed by Mignot511

et al. (2021).512

6 Summary and conclusion513

In this study, we have parameterized the distribution of water vapor at the meso-514

scale, typically 200 km, as a function of the average temperature and specific humidity.515

This parameterization is meant to predict supersaturation and cloud formation in an AGCM.516

The distributions of water vapor are built from the IAGOS observational product, which517

is composed of 27 years of airborne measurements of atmospheric properties, such as tem-518

perature and relative humidity, corresponding to a total of 257 millions measurements.519

We applied a new reconstruction algorithm to increase the quality and reliability of the520

data.521

The observed distributions of water vapor are expressed using relative humidity w.r.t.522

ice, and their standard deviation and skewness are investigated as a function of the av-523

erage temperature and specific humidity. Clear patterns ermerge for how standard de-524

viation and skewness evolve, with a noticeable increase in magnitude with increasing tem-525

perature. For a fixed temperature, the standard deviation shows a quadratic behavior,526

between 0 % to a relative humidity higher than 100 %. Beyond this value, it increases527

again but with a less clear pattern. Skewness is correlated to the standard deviation: when528

the latter has a quadratic behavior, skewness has a linear one, decreasing from a pos-529

itive value to a negative value with increasing average relative humidity. The zero value530

is reached at about the same average relative humidity as where standard deviation is531

maximum.532

The distributions are then fitted to a beta law, with a very high determination co-533

efficient. The parameters of the fitted distributions are parameterized with empirical func-534

tions of average temperature and humidity with five parameters, for potential direct ap-535

plication in AGCMs. The distributions are again fitted with this parameterization, and536

the determination coefficient is high, always greater than 0.917. In particular, the pa-537

rameterization predicts the observed ice supersaturation fraction with a very good ac-538

curacy. The sensitivity of the parameterization to different geographical regions is in-539

vestigated, and indicates that for a same set of parameters, the parameterization suc-540

cessfully captures different situations around the Earth, which is a major requirement541

for an implementation in an AGCM.542

This parameterization is designed to be implemented in AGCMs to better repre-543

sent the formation and evolution of high clouds and condensation trails. Future work544

will focus on testing its implementation and tuning in an AGCM.545

–17–



manuscript submitted to JGR: Atmospheres

Appendix A Reconstruction algorithm546

The idea of the algorithm is to reconstruct a reference time series of relative hu-547

midity w.r.t. liquid RHl, from the measured time series R̃Hl. RHl is a high-temporal res-548

olution time series, and R̃Hl is the time series measured by the capacitive hygrometer549

from IAGOS. Neis et al. (2015) (hereinafter N15) showed that R̃Hl can be modelled as550

an exponential moving average (EMA) smoothing of RHl. The EMA is defined as a re-551

cursive linear transformation of this quantity RHl(t), to the smoothed quantity R̃Hl(t),552

with a dependence on the sensor temperature TS :553

R̃Hl(t) = R̃Hl(t−∆t) + α(TS ,∆t) · (RHl(t)− R̃Hl(t−∆t)) (A1)

where ∆t is the time between two measurements and α is a function of TS and ∆t.554

The methodology of the reconstruction algorithm we use is based on N15, which555

itself relies on high-resolution colocated measurements of RHl from the CIRRUSIII and556

AIRTOSS-ICE campaigns (Krämer et al., 2016, 2020). The preprocessing and group-557

ing of the data follow the same procedure as in N15 and are not detailed here. The ma-558

jor difference between N15 and this work is that N15 provided an algorithm to construct559

R̃Hl from RHl, but in this study we provide an algorithm to reconstruct RHl from R̃Hl.560

A reconstruction of the time series in similar conditions has already been done by Ehrlich561

and Wendisch (2015), but the α term of Eq. A1 is constant in their work, while here we562

make it depend upon temperature.563

Following Ehrlich and Wendisch (2015), we first smooth the raw data to reduce the564

noise using a Blackman window, defined by:565

w(t) = 0.42− 0.5 cos(2π t/tB,1(TS)) + 0.08 cos(4π t/tB,1(TS)), (A2)

where tB,1 is the size of the window in seconds. As α, this value depends on the sensor566

temperature TS , and will need to be evaluated. We then reverse the EMA, using Eq. A1:567

RHl(t) = R̃Hl(t−∆t) + α(TS ,∆t)
−1 · (R̃Hl(t)− R̃Hl(t−∆t)) (A3)

with α(TS ,∆t) = 1− exp

(
− ∆t

τ(TS)

)
(A4)

Finally, to remove the additional noise created by this operation, and following once568

again Ehrlich and Wendisch (2015), we smooth the result with a new Blackman window569

following Eq. A2, with another window size tB,2.570

When we apply the methodology of N15 to this new reconstruction algorithm, we571

find the following formulations for the three temperature-dependent calibration functions572

τ , tB,1 and tB,2:573

τ(TS) = exp
(
−80.5 + 0.765 TS − 0.00171 T 2

S

)
(A5)

tB,1(TS) = exp
(
−26.3 + 0.343 TS − 0.000886 T 2

S

)
(A6)

tB,2(TS) = max (1, 68.5− 0.25 TS) (A7)

We compute the determination coefficient between the RHl time series measured574

by the high-resolution instrument and those (1) measured by the IAGOS instrument,575

(2) measured by the IAGOS instrument to which we applied the reconstruction algorithm,576

and (3) measured by the IAGOS instrument to which we applied a moving average of577

∆t = 1 min, as done in Gierens et al. (2007). This is done for the 12 AIRTOSS flights578

(AIR1 to AIR12), and to 5 of the CIRRUSIII flights (CIR1 to CIR5) for which the IA-579

GOS instrument was installed. Our reconstruction algorithm is overall increasing the qual-580

ity of the IAGOS measurements (Table A1). However, an important assumption of this581

algorithm is that it can be applied with the same parameters to all the IAGOS flights,582
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Table A1. Determination coefficient R2 computed between the time series of the high-

resolution measurements of RHl and the IAGOS measurements (raw), the IAGOS measurements

to which the reconstruction algorithm is applied (reconstruction), and the IAGOS measurements

to which an averaging procedure of ∆t = 1 min is applied (average), for 17 flights.

Flight R2 raw R2 reconstruction R2 average

AIR1 0.891 0.965 0.885
AIR2 0.829 0.857 0.827
AIR3 0.938 0.960 0.935
AIR4 0.826 0.843 0.817
AIR5 0.863 0.891 0.860
AIR6 0.775 0.737 0.753
AIR7 0.983 0.981 0.937
AIR8 0.576 0.566 0.554
AIR9 0.968 0.973 0.951
AIR10 0.947 0.960 0.926
AIR11 0.964 0.985 0.959
AIR12 0.968 0.989 0.960
CIR1 0.484 0.691 0.486
CIR2 0.758 0.701 0.758
CIR3 0.597 0.732 0.602
CIR4 0.716 0.710 0.722
CIR5 0.668 0.735 0.672
Mean 0.809 0.840 0.800

and that the quality of the data will overall increase. This assumption has only been val-583

idated for the 17 used flights which flown in similar meteorological conditions. Addition-584

nal co-located measurements using high-resolution sensors along with the IAGOS sen-585

sors in different meteorological conditions would strenghten this assumption.586

Appendix B Properties of the beta law587

The average µ, the standard deviation σ and the skewness γ of a beta law are ex-588

pressed as a function of the location parameter a, the scale parameter c−a and the two589

shape parameters p and q as:590 
µ = µ̄−a

c−a
σ = σ̄

c−a
γ = 2(q−p)

√
p+q+1

(p+q+2)
√
pq

(B1)

with

{
µ̄ = p

p+q

σ̄ =
√

pq
(p+q)2(p+q+1)

Therefore, the three parameters c, p and q can be determined as a function of the591

average, the standard deviation, the skewness and the location parameter such that:592 
p = ν

ξ2(ν+1)+1

q = ν − p
c = a+ p+q

p (µ− a)
(B2)

with ν = 2 ξ
2−γξ−1
γξ−2ξ2

and ξ = σ
µ−a
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Open Research Section593

The processing code will be made freely available on Zenodo if the paper is accepted.594

In the meantime, it is accessible on a gitlab: https://gitlab.in2p3.fr/audran.borella/595

iagos-water-vapor-distributions-parameterization. The IAGOS data can be down-596

loaded from the IAGOS data portal at https://doi.org/10.25326/20 (Boulanger et al.,597

2018). This study used IAGOS data on their 01/01/2024 version.598
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Lohmann, U., & Kärcher, B. (2002). First interactive simulations of cirrus clouds703

formed by homogeneous freezing in the ECHAM general circulation model.704

Journal of Geophysical Research: Atmospheres, 107 (D10), AAC 8–1–AAC705

8–13. doi: 10.1029/2001JD000767706

Mignot, J., Hourdin, F., Deshayes, J., Boucher, O., Gastineau, G., Musat, I., . . .707

Silvy, Y. (2021). The tuning strategy of IPSL-CM6A-LR. Journal of Advances708

in Modeling Earth Systems, 13 (5). doi: 10.1029/2020MS002340709

Muench, S., & Lohmann, U. (2020). Developing a cloud scheme with prognos-710

tic cloud fraction and two moment microphysics for ECHAM-HAM. Jour-711

nal of Advances in Modeling Earth Systems, 12 (8), e2019MS001824. doi:712

10.1029/2019MS001824713

Neis, P., Smit, H. G. J., Rohs, S., Bundke, U., Krämer, M., Spelten, N., . . . Pet-714
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Abstract17

Temperature and water vapor are known to fluctuate on multiple scales. In this18

study 27 years of airborne measurements of temperature and relative humidity from IA-19

GOS (In-service Aircraft for a Global Observing System) are used to parameterize the20

distribution of water vapor in the upper troposphere and lower stratosphere (UTLS). The21

parameterization is designed to simulate water vapor fluctuations within gridboxes of22

atmospheric general circulation models (AGCMs) with typical size of a few tens to a few23

hundreds kilometers. The distributions currently used in such models are often not sup-24

ported by observations at high altitude. More sophisticated distributions are key to rep-25

resent ice supersaturation, a physical phenomenon that plays a major role in the forma-26

tion of natural cirrus and contrail cirrus. Here the observed distributions are fitted with27

a beta law whose parameters are adjusted from the gridbox mean variables. More specif-28

ically the standard deviation and skewness of the distributions are expressed as empir-29

ical functions of the average temperature and specific humidity, two typical prognostic30

variables of AGCMs. Thus, the distribution of water vapor is fully parameterized for a31

use in these models. The new parameterization simulates the observed distributions with32

a determination coefficient always greater than 0.917, with a mean value of 0.997. More-33

over, the ice supersaturation fraction in a model gridbox is well simulated with a deter-34

mination coefficient of 0.983. The parameterization is robust to a selection of various ge-35

ographical subsets of data and to gridbox sizes varying between 25 to 300 km.36

Plain Language Summary37

Temperature and water vapor fluctuate in the atmosphere on different scales, from38

micrometers to thousands of kilometers. In this study we use airborne measurements of39

temperature and water vapor to study the spatial variability of humidity in the upper40

troposphere and lower stratosphere (UTLS). The observations are used to build a sim-41

ple modelling of water vapor distribution on scales from tens of kilometers to hundreds42

of kilometers, which is designed to be used in atmospheric general circulation models (AGCMs),43

the atmospheric components of Earth system models. This new modelling of water va-44

por fluctuations aims to increase the physical representation of cirrus clouds and aviation-45

induced cloudiness in AGCMs. The observed water vapor distributions are modelled with46

a beta distribution, whose parameters are completely determined as empirical functions47

of two major variables of AGCMs, the average temperature in a gridbox, and the aver-48

age water vapor in a gridbox. Overall, the modelled distributions fit very well those ob-49

served.50

1 Introduction51

Ice supersaturation is an ubiquitous phenomenon in the upper troposphere whereby52

the partial pressure of water vapor is higher than the saturation value with respect to53

the ice phase, thus being thermodynamically unstable (Gierens et al., 2012). Ice super-54

saturated regions (ISSRs) occur at temperatures lower than 273.15 K (0°C), with a life-55

time that can be as long as 24 hours (Irvine et al., 2014) and spatial scales that vary from56

tens of kilometers to a thousand of kilometers (Spichtinger & Leschner, 2016). Forma-57

tion, extent, and lifetime of ISSRs are affected by vertical motions associated with con-58

vective systems or extratropical cyclones as well as small-scale gravity waves and tur-59

bulence (Gierens et al., 2012; Kärcher et al., 2014). They are also strongly affected by60

the weather pattern, and thus highly vary in space and time (Lamquin et al., 2012). These61

regions are a prerequisite for the formation of persistent condensation trails created by62

aviation, which themselves have a significant impact on the climate (Schmidt, 1941; Ap-63

pleman, 1953; Lee et al., 2021). Indeed, aircraft fly in the upper troposphere and lower64

stratosphere (UTLS), a region where ISSRs occur frequently, but with a high spatial and65

seasonal variability (Spichtinger et al., 2003).66
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Natural cirrus can also form in situ in ISSRs. Although they play a major role in67

the radiative balance of the Earth, climate feedbacks involving such clouds are still un-68

certain (Ceppi et al., 2017; Kärcher, 2017; Hill et al., 2023). This feedback can be es-69

timated using atmospheric general circulation models (AGCMs), by simulating the changes70

in cloud radiative effect in a warming climate. One of the main and long-standing chal-71

lenge of current AGCMs is the accurate representation of the formation and evolution72

of clouds. As the spatial scale of cloud processes is much smaller than the size of an AGCM73

gridbox, they must be parameterized. AGCMs generally consider a distribution of wa-74

ter inside each gridbox, which may operate on the total water (e.g., Smith, 1990; Bony75

& Emanuel, 2001; Tompkins, 2002) or only the water vapor in the clear-sky part of the76

gridbox (e.g., Tiedtke, 1993; Tompkins et al., 2007; Muench & Lohmann, 2020). An as-77

sociated probability density function (PDF) can then be used to diagnose cloud prop-78

erties within a gridbox, by calculating the quantity of water inside the newly formed clouds79

as well as the corresponding fraction of the gridbox occupied by clouds. Indeed, all the80

water that is distributed beyond a given threshold called the condensation threshold is81

converted into cloudy water, and some properties of the formed clouds can also be in-82

ferred from the distribution. A diagnostic scheme generally uses a total water distribu-83

tion and diagnoses cloud amount and properties at each timestep. On the contrary, a84

prognostic scheme, which considers a balance of cloud formation and destruction terms85

at each timestep, often only requires a distribution of the water vapor in the clear-sky86

part of the gridbox.87

At temperatures higher than 273.15 K (0°C), all the water that exceeds liquid sat-88

uration can be considered to be instantly condensed into clouds through a saturation ad-89

justment process (Pruppacher & Klett, 2010). Therefore, the distribution of water va-90

por is easily separated into a clear and a condensed part, with the liquid saturation as91

a threshold. On the contrary, ice crystals can be formed within ISSRs from various pro-92

cesses and at various supersaturation levels. For example, in the so-called cirrus tem-93

perature regime below 235 K (−38°C), ice crystals can form through either homogeneous94

or heterogeneous nucleation (Kärcher, 2003). Which process is involved depends on the95

supersaturation level, the temperature, and the quantity and properties of the atmospheric96

aerosols. Homogeneous nucleation, which in this range of temperature refers to the ho-97

mogeneous freezing of solution aerosol droplets, occurs in the absence of ice nucleating98

particles (INPs) and if supersaturation is high enough. The supersaturation value above99

which homogeneous nucleation occurs, often referred to as the Koop’s threshold, depends100

on e.g., the ambient temperature, the aerosol particle size and activity, and their chem-101

ical composition (Koop et al., 2000; Gierens, 2003; Vignon et al., 2022; Baumgartner et102

al., 2022), but this threshold can be reduced to an approximate function of temperature103

only (Ren & Mackenzie, 2005). Heterogeneous nucleation, which here refers to hetero-104

geneous freezing of solution aerosol droplets, can nevertheless occur at supersaturations105

comprised between the saturation and the homogeneous nucleation threshold, depend-106

ing on the quantity and properties of INPs (Kärcher et al., 2022). There is therefore a107

continuous range of thresholds for condensation, instead of a single one as it is the case108

for temperatures higher than 273.15 K. A cloud formation parameterization thus requires109

the knowledge of the distribution of supersaturation to take into account a continuous110

range of potential condensation thresholds. The parameterization of the distribution of111

water vapor must therefore be as highly representative as possible of the true state of112

the atmosphere.113

Previous studies have focused on the distribution of humidity in the UTLS, from114

observations or simulations (e.g., Gierens et al., 1999; Tompkins, 2002; Reutter et al.,115

2020; Petzold et al., 2020). However, they characterize the global distribution of humid-116

ity and its dependence on the season, altitude or geographical location. In contrast, a117

parameterization in an AGCM is built from state variables of the model, such as tem-118

perature or specific humidity within each gridbox at each timestep, rather than season,119

altitude, latitude or longitude. Therefore, these distributions from previous studies are120
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of great help to evaluate the outputs of an AGCM, but are not adequate to design a new121

physically-based parameterization.122

This study thus aims to parameterize the fine-scale distribution of clear-sky wa-123

ter vapor from observations for AGCMs resolution scales, typically from 25 to 300 km.124

The only explanatory variables used in the parameterization are two of the prognostic125

variables of an AGCM, namely temperature and specific humidity. The objective is to126

build a sub-grid scale distribution which can be used for further parameterization de-127

velopment in such models. It is not straightforward that gridbox-averaged temperature128

and specific humidity are sufficient to faithfully and exhaustively represent the variabil-129

ity of water vapor within an AGCM gridbox. However, we refrain to use other variables130

than prognostic variables of an AGCM in order to build a cloud parameterization that131

does not depend on other physical parameterizations, which may introduce additional132

inter-dependencies, and, among prognostic variables, temperature and specific humid-133

ity are essential in explaining the origin of the variance of water vapor (Gierens et al.,134

2007).135

Most types of observations at high altitude, such as measurements from airborne136

campaigns or radiosoundings, are usually sparse temporally and geographically (Krämer137

et al., 2020; Wolf et al., 2023), which prevents deriving significant statistics at climate138

temporal and spatial scales. We use here the IAGOS (In-service Aircraft for a Global139

Observing System) observational product, which is composed of airborne measurements140

made in a wide geographical zone and provides data since August 1994, thus increasing141

considerably the statistical representativity of our results. IAGOS is a European Research142

Infrastructure for global observations of atmospheric composition from commercial air-143

craft (Petzold et al., 2015, 2017). It is composed of a few commercial aircraft equipped144

with multiple sensors, in particular humidity and temperature sensors. The main advan-145

tage of IAGOS is the large number of in situ measurements within the UTLS in all sea-146

sons, which we use to construct the distributions. Recognizing the importance of these147

data, Gierens et al. (1997) and Gierens et al. (2007) also used the IAGOS dataset to in-148

vestigate mesoscale distributions of humidity in the UTLS, but those distributions were149

not analyzed for AGCM parameterization purposes.150

The paper is structured as follows. In Section 2 we present the IAGOS dataset and151

the methodology we use to analyse the data. In Section 3 we present the distributions152

as observed by IAGOS and analyse their main properties, as well as the dependence of153

their standard deviation and skewness to the larger-scale temperature and humidity. In154

Section 4 we derive the parameterization and conduct sensitivity studies. Results and155

assumptions are discussed in Section 5, and Section 6 closes the paper with a summary156

and conclusions.157

2 Dataset and methods158

2.1 IAGOS dataset159

IAGOS measurements include concentrations of different gases (e.g., CO, O3, CO2,160

water vapor), aerosol, dust, cloud particles, and basic meteorological data. Two main161

datasets comprise IAGOS: MOZAIC (1994-2014) and IAGOS-CORE (from 2011). In our162

study, we use all available data in the 175–325 hPa pressure range from flights that took163

place between 1995 and 2021. Measurements are mainly performed in the mid-latitude164

Northern Hemisphere, especially in the North Atlantic corridor (Fig. 1), but we inves-165

tigate the spatial dependency of our results in Sections 3.3 and 4.4.166

The IAGOS measurements are not specifically made in clear-sky, and pre-2017 data167

lack differentiation between cloudy and clear-sky conditions. From 2017 onwards, a back-168

scatter cloud probe was installed on some aircraft, allowing for such a differenciation.169

About 5 % of those measurements sampled cloudy air at most (Sanogo et al., 2023). Be-170
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Figure 1. Number of measurements per box from the IAGOS infrastructure around the globe,

between 1995 and 2021. The boxes measure 2.5° in longitude and 1.3° in latitude. Note the

logarithmic scale.

cause this percentage is limited and that we can only differentiate clear- and cloudy-sky171

for a limited subset of the data, we assume that the measurements are all mostly rep-172

resentative of clear-sky conditions, and use all the available data to keep a high num-173

ber of measurements.174

2.2 Data processing175

Relative humidity and temperature are measured with the ICH (IAGOS Capac-176

itive Hygrometer) instrument, which consists of a capacitive relative humidity sensor and177

a platinum resistance sensor for the temperature measurement at the humidity sensing178

surface. Uncertainties stem from various sources, including instrumentation limitations179

and environmental conditions during data collection. The absolute uncertainty on tem-180

perature measurements is estimated as 0.5 K and the relative uncertainty on relative hu-181

midity w.r.t. liquid measurements as 5-6 % (Petzold et al., 2015; Rolf et al., 2023). The182

ICH samples relative humidity and temperature every 4 s, corresponding to about 1 km183

in flight. The temperature sensor has a time resolution of 4 s, however the humidity sen-184

sor has a time resolution which varies from 1 s at 300 K to 120 s at 210 K, the latter cor-185

responding to about 30 km in flight (Neis et al., 2015).186

As this study aims to investigate the variability of moisture on scales between 25187

and 300 km, the low time resolution of the humidity sensor is a major concern. To study188

the subgrid-scale distribution of water on scales as low as 25 km, the measurements must189

be independent on scales much lower than 25 km. Previous studies performed a running190

mean on the data to dampen the lag effect (e.g., Gierens et al., 2007). However, such191

an averaging process reduces the water vapor variability and smoothes out peaks in the192

data that correspond to realistic small spatial scales fluctuations. To address this prob-193

lem, we developed a reconstruction algorithm which partly solves the time resolution is-194

sue. The rationale of the algorithm is to reconstruct high-resolution data from the mea-195

sured data, which is shown to differ by a temperature-dependent exponential moving av-196

erage (Neis et al., 2015). Following Neis et al. (2015), the relationship between the time197

response of the sensor and the temperature is found using collocated measurements of198

reference high-resolution sensors that were conducted in specific dedicated campaigns199

for a few flights. The application of this reconstruction algorithm leads to a significant200

improvement of the data quality, as further detailed in Appendix A.201
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Figure 2. Illustration of the methodology used for grouping the data. Measurements from a

given flight (a) are grouped into batches of length Lbatch (b) and pooled into the corresponding

(T ,RHi) bin on the basis of their average values.

Data are then screened with different filters in order to remove unreliable values.202

The measurements are provided with a quality flag, and data for which temperature and203

relative humidity are not labelled as “good” or “limited” are discarded from the anal-204

ysis. The reconstruction algorithm is then applied to the time series of water vapor, which205

neither adds nor deletes any data point, and which is not affected by data gaps. Next,206

the measurements are screened to the 175–325 hPa pressure layer. Two additionnal fil-207

ters are then applied: (1) the first one removes data when the aircraft is climbing or de-208

scending too fast because we want statistics at a given pressure level, and (2) a second209

filter removes data for which there is less than 0.5 measurement per km available, to en-210

sure that statistics are significant enough. The dataset after screening is composed of211

60,304 flights, for a cumulative number of 257 million measurements. The time series of212

the measured relative humidity w.r.t. liquid is then converted into a time series of spe-213

cific humidity q, knowing temperature and pressure for each measurement.214

Each flight trajectory is then subdivided into batches of a fixed length Lbatch, set215

at 200 km (Fig. 2). These batches represent the approximate size of a typical gridbox216

of an AGCM, and the sensitivity of our results to Lbatch is investigated in Section 4.4.217

We compute the average temperature 〈T 〉 and average specific humidity 〈q〉 in each batch.218

Hereinafter, we will consider the variable 〈RHi〉, which we define such that:219

〈RHi〉 = 〈RHi〉 (〈T 〉, 〈q〉, 〈p〉) = 100 · 〈p〉 · 〈q〉
ε psat,i (〈T 〉)

, (1)

where ε is the ratio between the molar mass of water and that of dry air, psat,i is the sat-220

urated pressure w.r.t. ice (Sonntag, 1990), and 〈p〉 is the average pressure in the batch.221

We use 〈RHi〉 because it gives direct information about cloud formation and saturation.222

Since 〈RHi〉 is computed from 〈T 〉, 〈q〉 and 〈p〉 directly, 〈RHi〉 and 〈q〉 can be estimated223

from one another in an AGCM gridbox without further assumption.224

〈T 〉 is associated to the corresponding temperature bin j centered around T
j

with225

a width of 0.5 K [T
j − 0.25 K, T

j
+ 0.25 K], where T

j
varies from 200.25 to 254.75 K226
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Figure 3. Distributions of (a) specific humidity, (b) relative humidity w.r.t. ice, (c) liquid

saturation deficit for four bins of RHi (colored), and (d) observed and approximated ice supersat-

uration fractions when T is used to compute the saturation threshold for each humidity variable,

with T fixed to the 225 K bin.

for a total of 110 different bins. Similarly, 〈RHi〉 is associated with a humidity bin, whose227

average value and width depend on T
j
. When converted to relative humidity w.r.t. liq-228

uid, this k bin, centered aroung RH
k

l with a width of 2.4 %, is [RH
k

l − 1.2 %, RH
k

l +229

1.2 %], where RH
k

l varies from 1.2 to 106.8 % for a total of 45 different bins. The cor-230

responding binned average value is noted RH
k

i when converted to relative humidity w.r.t.231

ice.232

We retrieve the measurements of temperature and specific humidity for each batch233

and associate it with the binned average values T
j

and RH
k

i , hereinafter simply referred234

to as T and RHi. This is done for all batches in each flight, for all the flights in the dataset.235

The measurements are then used to calculate the distribution of humidity for each (T ,236

RHi) bin.237

3 Analysis of the distributions of water vapor in the UTLS238

3.1 Example of individual distributions239

We obtain distributions of specific humidity q, relative humidity w.r.t. ice RHi, and240

liquid saturation deficit sl, three humidity variables commonly used in cloud formation241

schemes of AGCMs for (T , RHi) bins. In this section, we illustrate the results for four242

values of average humidity covering a wide range, with T arbitrarily fixed to the 225 K243

bin. The distributions are analysed using their scale, which is quantified using standard244

deviation, and their shape, which is quantified by skewness.245

The scale and shape of the distributions for all three humidity variables highly de-246

pend on RHi (Fig. 3a,b,c). The standard deviations of the distributions of q, RHi, and247
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sl, vary from 0.001 to 0.04 g.kg−1, from 1 to 17 %, and from 0.02 to 0.03 g.kg−1, respec-248

tively. This concurs with the result obtained by Gierens et al. (2007) that additionally249

showed that, for a fixed RHi, standard deviation strongly depends on T (see their Fig. 7).250

However, the dependence of scale and shape to RHi is different for the three hu-251

midity variables. The standard deviation of the q distributions increases with RHi, and252

the skewness decreases but remains positive (Fig. 3a). The skewness of the RHi distri-253

butions also decreases, but reaches 0 around RHi = 80 % and becomes negative at higher254

values of RHi (Fig. 3b). The corresponding standard deviation increases, peaks and then255

decreases, with a maximum value also reached around RHi = 80 %. Contrarily to q,256

the distributions of sl show a decreasing standard deviation with increasing RHi, and257

a negative and decreasing skewness with increasing RHi (Fig. 3c).258

Those differences stem from local fluctuations in temperature, as pressure is fixed.259

From a modelling perspective, this implies that the choice of the humidity quantity has260

an impact on the cloud formation scheme, because the saturation threshold is usually261

computed using T . To further illustrate this, we calculate the approximated ice super-262

saturation fraction of each distribution of humidity using T instead of local T to com-263

pute the saturation threshold, as usually done in AGCMs (Fig. 3d). For low values of264

RHi, the approximated fraction is almost zero for all three humidity variables. However,265

for RHi > 70 %, the fraction computed using q distributions can be more than twice266

the one observed. This suggests that q is the less adapted humidity variable among the267

three to approximate ice supersaturation fraction in AGCMs. In the following sections268

we conduct the analysis using RHi.269

3.2 Statistics of the distributions270

To generalize our findings, we systematically study the distributions as functions271

of T and RHi. Fig. 4a shows how the 257 millions observations are distributed across272

the 4950 (T , RHi) bins. The highest numbers of measurements are found at low RHi,273

and are usually made in the lower stratosphere. Observations at RHi higher than 40 %274

are usually made in the upper troposphere or at the tropopause. The presence of very275

few data points above the liquid saturation curve highlights the uncertainties of the IA-276

GOS data, showing sometimes non-physical humidity values. In the following, we study277

the standard deviation and skewness of the distributions as a function of T and RHi. These278

statistics are computed for bins with more than 2516 measurements available, such that279

all the bins above the homogeneous nucleation curve are discarded.280

Standard deviation (σ) is a quadratic function of RHi for a fixed T , peaking around281

RHi = 70 % and falling to 0 % at RHi = 0 %, and to about 10 % at RHi = 110 %282

(Fig. 4b,d). At saturations higher than 110 %, the pattern of σ is noisier, yet increases283

with increasing RHi. The shape of the described pattern is the same for all values of T ,284

but the maximum of σ highly depends on T , ranging from 6 % at 205 K, to about 23 %285

at 245 K.286

Skewness is linear between RHi = 0 % and 110 % for a fixed T , decreasing from287

about 5 to a value between 0 and −1 (Fig. 4c,e). Its zero value is reached at about the288

same RHi value than the peak value of σ. For RHi > 110 %, the pattern of skewness289

becomes noisier, but reaches a plateau. The slope of the linear dependence of skewness290

to RHi does not depend on T , but its intercept does, decreasing by about 1 unit when291

T increases from 210 K to 245 K.292

3.3 Spatial sensitivity of the statistics293

The distribution of RHi highly depends on the pressure level relative to the tropopause294

and on the geographical zone considered (Reutter et al., 2020; Sanogo et al., 2023). As295

we aim to parameterize the distribution of RHi for an AGCM as a function of T and RHi296
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Figure 4. Number of measurements (a), standard deviation (b and d) and skewness (c and e)

of the distributions as functions of T and RHi. The first and second rows show the quantities in

the (T , RHi) plane, while the third row shows them as a function of RHi only, with T indicated

through the color scale. The saturation w.r.t. liquid (solid line) and homogeneous nucleation

(dashed line) threshold are plotted. Homogeneous nucleation depends on other than tempera-

ture so data points above the curve are not unphysical. The homogeneous nucleation threshold

plotted is the Ren and Mackenzie (2005) fit of the Koop et al. (2000) data.
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Figure 5. Standard deviation [%] of the RHi distribution per (T , RHi) couple, for the upper

troposphere (a), the lower stratosphere (b), the NH mid-latitudes (c), and the tropics (d). The

lines are the same as in Fig. 4.

only, we conducted sensitivity runs to check the dependency of our findings to the pres-297

sure and geographical zone by screening the IAGOS data to four different regions: the298

troposphere, the stratosphere, the North Hemisphere (NH) mid-latitudes, and the trop-299

ics. We call the base case the case with all the data. The troposphere and stratosphere300

measurements are screened using the chemical definition of the tropopause: the tropo-301

sphere is associated to ozone concentrations lower than 130 ppb, and the stratosphere302

to ozone concentrations higher than this value (Bethan et al., 1996; Gierens et al., 1999).303

We use the ozone measurements from IAGOS for the selection. The NH mid-latitudes304

are defined by the band of latitudes comprised between 40°N and 60°N, and the trop-305

ics by the band of latitudes comprised between 30°S and 30°N. We develop here the re-306

sults of this sensitivity study for standard deviation, but similar conclusions can be drawn307

for the skewness (not shown).308

For the troposphere, the NH mid-latitudes and the tropics, although the value of309

the peak has a lower amplitude than in the base case, the results are consistent with our310

previous findings (Fig. 5a,c,d) and the impact of such a screening is limited. Such a re-311

sult is a priori not obvious since the process at the origin of the humidification of the312

UTLS at mid-latitudes and tropics are not the same (Gierens et al., 2012).313

On the contrary, there is for the stratosphere an increase in standard deviation with314

increasing RHi, with no peak (Fig. 5b). The results are difficult to generalize, because315

there is a clear lack of data for most of the (T , RHi) space, and the uncertainty of the316

humidity sensor is larger in stratospheric air. This is however not a major issue, as our317

ultimate goal is to accurately simulate the formation of tropospheric clouds in AGCMs.318
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Table 1. Compliance of usual probability distributions to our four criteria. Criterion 1: tails

can be long. Criterion 2: skewness can be positive and negative. Criterion 3: the distribution can

be left-bounded. Criterion 4: moments can be analytically inverted.

Distribution law Reference example Criterion 1 Criterion 2 Criterion 3 Criterion 4

Dirac Lohmann and Kärcher (2002) X X X
Triangular Smith (1990) X X X
Uniform Tompkins et al. (2007) X X
Gaussian Muench and Lohmann (2020) X
Beta Tompkins (2002) X X X X
Generalized lognormal Bony and Emanuel (2001) X X X
Lorentz Gierens et al. (1997) X
Skew normal - X X
Weibull - X X X

4 Parameterization of the RHi distribution319

4.1 Fit of the distributions to a usual law320

The first step to parameterize the distributions is to find a distribution law which321

fits well the observations, and which has intrinsic properties that would make it suitable322

for an implementation in an AGCM. We define four criteria which are based on the re-323

sults found in the previous section and on other needs. The law needs to allow for a long324

tail (criterion 1). The law must allow both positive and negative values of skewness (cri-325

terion 2). The law needs to be bounded to the left to allow for a physical bound of RHi326

(criterion 3). An additional but fundamental criterion is that the moments of the dis-327

tribution can be analytically inverted, to allow for an implementation in a numerical AGCM328

(criterion 4). We test various distributions against our criteria in Table 1 and find that329

the most appropriate law is the beta distribution, which was already proposed by Tompkins330

(2002) to model total water distributions.331

The beta distribution is bounded to the left by a, and to the right by c. Its loca-332

tion parameter is loc = a, and its scale parameter is scale = c−a. The beta distribu-333

tion is further defined by two shape parameters p and q, so that its probability density334

function (PDF) is expressed as:335

Pp,q,a,c(RHi) = fp,q

(
RHi − a
c− a

)
/(c− a) (2)

with fp,q(x) =
xp−1(1− x)q−1

B(p, q)

and RHi ∈ [a, c]

where B is the beta function. The equations linking the mean, the standard deviation336

and the skewness of the beta distribution to its four parameters can be found in Appendix B.337

Each distribution associated with a bin (T , RHi) is fitted to a beta law, for which338

the parameters are found by minimizing the negative log-likelihood function. Addition-339

ally, the parameters are constrained to ensure that some of the requirements previously340

stated are met. The location parameter a must be greater than 0 %, so that no nega-341

tive value of RHi is permitted. The shape parameters p and q are arbitratily constrained342

to be lower than 50, so that the numerical computation of the PDF of the beta distri-343

bution does not use high-exponent values. In the following, the quality of the fit is eval-344

uated by computing each determination coefficient R2
fit,k between the cumulative den-345

sity function (CDF) of the observed and fitted distributions, for the kth bin of (T , RHi).346
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Figure 6. Cumulative density functions (CDF) of the observed distributions (solid lines and

light colors), the fitted distributions (dashed lines and medium colors) and the parameterized dis-

tributions (dotted lines and dark colors), for four values of RHi (colored) and T fixed to 225 K.

The observed distributions are the same as those shown in Fig. 3b.

It is more appropriate to fit the CDF than the PDF because in statistical cloud schemes,347

cloud formation, supersaturation, cloud water content, are estimated by the integration348

of the distribution of water vapor, which is the quantity provided by the CDF.349

The fit of the observed distributions to the beta law shows good agreement (Fig. 6;350

compare the solid and dashed curves). The determination coefficients R2
fit,k between the351

fitted and the observed CDFs are equal to 0.989, 0.997, 0.999 and 0.998 for the four val-352

ues of RHi presented, 17 %, 48 %, 82 % and 117 %, respectively. However, the skewness353

of the fitted distributions are underestimated for distributions with low standard devi-354

ations, as it is the case for the RHi = 17 % distribution. This is because of the con-355

straint on the scale parameters p and q, which limits the capability of the distribution356

to adapt its shape to match as much as possible the CDF. This difference between the357

observed and fitted skewness explains the lower R2
fit,k for the RHi = 17 % distribution358

than for the other three distributions. The determination coefficient R2
fit,k has a mean359

of 0.997, with a minimum value of 0.97, which depicts a very good agreement overall.360

4.2 Empirical formulation of the standard deviation and skewness361

In a next step, we seek to express the four parameters as functions of T and RHi362

in order to have a fully parameterized distribution. The location parameter a is fixed363

to RHi = 0 %, because its value was almost always 0 % when fitting the distributions364

(not shown). The four parameters can be formally expressed as functions of the aver-365

age, standard deviation and skewness (see Appendix B), and we express these statisti-366

cal measures as a function of T and RHi, instead of the parameters. The average is set367

to RHi so as to conserve the water vapor mass. We then construct empirical formula-368

tions of the standard deviation σ and skewness γ as functions of T and RHi, based on369

the analysis conducted in Section 3.2. The following paragraphs describe the empirical370

formulations, and Fig. 7 depicts them for four values of T 210, 225, 240 and 255 K.371

Following the analysis in Section 3.2, we parameterize the standard deviation σ as372

a quadratic function of RHi which peaks at RHi,max, for RHi lower than a threshold value373

RHi,0. For RHi > RHi,0, we assume a linear relationship between σ and RHi. This lin-374
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Figure 7. Empirical formulations of (a) the standard deviation and (b) the skewness as a

function of RHi for four values of T . In (a), the orange dots represent the points (RHi,max,σmax)

and the orange dashed line its dependence with temperature, while the green dot represents the

point (RHi,0,σ0). The dashed grey line illustrates the linear relationship of standard deviation to

the right of the green dot. In (b), the orange dots represent the cancellation points of skewness

(RHi,max,0), and the purple dots represent the points at the origin (0,γ0).

ear relation is drawn in Fig. 7a to the right of the green dot, and it is constructed fol-375

lowing the dashed grey line from the origin to the green dot. These different assump-376

tions lead to the following expression for σ:377

σ(T ,RHi) =

{
α(T )RHi(RHi − β(T )) if RHi ≤ RHi,0;
σ0RHi/RHi,0 if RHi > RHi,0.

(3)

RHi,0 and σ0 are constant values, which are represented by the green dot on Fig. 7a. α378

and β are two functions of T defining the quadratic part of σ. These two functions are379

determined by fixing σ(T ,RHi,0) = σ0 for all T , and by parameterizing the value of the380

peak of the curve σmax as follows:381

σmax(T ) = κv max
(
0, T − Tthresh

)
+ σ0, (4)

where Tthresh and κv are constant values. The values of RHi,max and σmax are represented382

by orange dots in Fig. 7a, and the orange dashed line. Tthresh is the temperature thresh-383

old below which σ shows no more peak, i.e., when the orange dot and the green dot over-384

lay. κv is the rate of increase of the peak value of σ with temperature, i.e., the rate at385

which the orange dot goes higher. The functions α and β, as well as RHi,max, can then386

be derived as:387

β(T ) =
2RHi,0

1 +
√

1− σ0

σmax(T )

(5)

α(T ) = −4σmax(T )

β(T )2
(6)

RHi,max(T ) =
β(T )

2
=

RHi,0

1 +
√

1− σ0

σmax(T )

. (7)

Again following the results of Section 3.2, we parameterize skewness so that it can-388

cels at a RHi value that also corresponds to the maximum of σ, RHi,max, which is rep-389

resented by orange dots on Fig. 7b. The linear dependence between skewness and RHi390
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Figure 8. Scatter plots of (a) the standard deviation (in %), (b) ice supersaturated fraction,

(c) fraction for which RHi is higher than 115 % and (d) fraction for which it is higher than 130 %

from the parameterized distributions (y-axes) versus the observed ones (x-axes).

is parameterized using Tthresh, because the lower the standard deviation, the lower the391

skewness (see Fig. 4). These assumptions lead to the following formulation for the skew-392

ness:393

γ(T ,RHi) = γ0(T )

(
1− RHi

RHi,max(T )

)
(8)

with γ0(T ) = κs max
(
0, T − Tthresh

)
, (9)

where κs is the rate of evolution of γ0, the skewness at RHi = 0 % with temperature.394

γ0 is represented with purple dots on Fig. 7b, falling to 0 if T is lower than Tthresh.395

4.3 Evaluation of the parameterization396

With these empirical formulations of the average, standard deviation, and skew-397

ness, the distribution of RHi is fully parameterized as a function of T and RHi. The value398

of the parameters Tthresh, RHi,0, σ0, κv and κs are obtained by fitting again each ob-399

served distribution to a beta law, but the four parameters p, q, a and c are now prescribed400

using the parameterization, with a being fixed. This means that instead of fitting each401

distribution with the four parameters of the beta law, all the distributions are now si-402

multaneously fitted with the five free parameters of the parameterization Tthresh, RHi,0,403

σ0, κv and κs. The resulting distributions from this new fit are called the parameter-404

ized distributions, and the fit minimizes
√

1
N

∑N
i (1−R2

par,k)2, where R2
par,k is the de-405

termination coefficient between the observed and parameterized CDF of the distribution406

for the kth bin of (T , RHi).407

The fits of the observed distributions to the parameterized beta law show good agree-408

ment (Fig. 6; compare the solid and dashed lines). R2
par,k has a mean of 0.997, with a409

minimum value of 0.917. This is lower than the minimum value of R2
fit,k which is 0.97,410

because some distributions, especially those corresponding to the edge of the (T , RHi)411

domain, are less well represented with the proposed parameterization. The values of the412

five parameters can be found in Table 2 (line “Base case”).413

The quality of the parameterization is also assessed by comparing the value of the414

observed and parameterized standard deviations, as well as the value of the observed and415

parameterized CDFs for three arbitrary values of relative humidity: RHi = 100 %, which416

represents the ice supersaturation fraction, 115 % and 130 %. The standard deviation417

σ is generally slightly underestimated, especially for high values of observed σ (Fig. 8a),418

which may have an impact on supersaturation cloud formation schemes for AGCMs, in419

particular for the representation of water content. On the contrary, ice supersaturation420

fraction and the fractions of RHi larger than 115 % and 130 % are much better captured421

(Fig. 8b, c, d). The determination coefficients R2 are 0.98, 0.96 and 0.91, respectively.422
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Table 2. Number of observations, values of the five free parameters of the parameterization as

well as mean and minimum value of R2
par,k, for the base and different sensitivity cases.

# obs. Tthresh [K] RHi,0 [%] σ0 [%] κv [%.K−1] κs [K−1] Mean R2
par,k Min. R2

par,k

Base case 257 M 216 115 10.8 0.192 0.0177 0.997 0.917
25 km-batch 259 M 205 85 3.8 0.038 0 0.998 0.986
50 km-batch 258 M 209 107 5.4 0.070 0 0.998 0.986
75 km-batch 258 M 210 110 6.4 0.104 0.0090 0.998 0.983
100 km-batch 258 M 210 110 7.2 0.124 0.0161 0.998 0.986
150 km-batch 257 M 216 117 9.0 0.201 0.0307 0.998 0.979
300 km-batch 256 M 210 110 11.9 0.189 0.0133 0.996 0.863
NH mid-latitudes 139 M 210 110 10.0 0.142 0.0048 0.997 0.951
Tropics 61 M 222 107 12.2 0.155 0.0018 0.995 0.841
North Atlantic 53 M 210 110 8.2 0.202 0.0354 0.998 0.923
Troposphere 105 M 220 116 10.3 0.275 0.0406 0.997 0.948
Stratosphere 74 M 186 200 1.7 0.355 0.0157 0.996 0.928
No clouds 40 M 210 110 11.0 0.145 0.0169 0.995 0.840

For ice supersaturation, the fraction is estimated with a maximum error of 0.1 in most423

of the cases. Fractions lower than 0.5 are slightly overestimated, and fractions higher than424

0.5 are slightly underestimated.425

4.4 Sensitivity of the parameterization426

We now assess the sensitivity of our parameterization to the length of the batches427

Lbatch and to further screening of the data by region or airmass property. We change Lbatch428

to simulate a change in the AGCM gridbox size, from 200 to 25, 50, 75, 100, 150 and 300 km.429

The regions used to screen the measurements are the tropics (30°S to 30°N), the North-430

ern Hemisphere (NH) mid-latitudes (40°N to 60°N), the North Atlantic (40°N to 60°N431

and 65°E to 5°E), the troposphere and the stratosphere. We also screen the clear-sky con-432

ditions measurements, using a threshold of Ni = 10−3 cm−3 for the minimum concen-433

tration of crystals defining a cloud, following Sanogo et al. (2023).434

When Lbatch varies from 25 to 300 km, the mean determination coefficient R2
par,k435

is always greater than 0.996 (Table 2). However, the quality of the fit strictly decreases436

with Lbatch, with a minimum R2
par,k going from 0.986 for a batch length of 25 km, to 0.863437

for 300 km. This indicates that the lower Lbatch, the better our parameterized distribu-438

tions simulate water vapor variability. κv and σ0 globally increase with Lbatch, mean-439

ing that the variability of water vapor is increasing with Lbatch. There is however no clear440

trend for Tthresh and κs, suggesting that large-scale dynamical processes are not the source441

or sink of skewness.442

Screening the data to specific regions does not significantly reduce the mean value443

of R2
par,k but it remains always very high, showing that the parameterized subgrid-scale444

distributions can simulate all the situations considered here. However, the parameters445

differ slightly when the measurements are screened for clear-sky condition than in the446

base case, suggesting that our assumption that all measurements are made in clear-sky447

may not be completely accurate.448
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5 Discussion449

5.1 Are IAGOS observations reliable and sufficiently robust to build a450

parameterization?451

We now discuss the potential limitations of our study, focusing on the capability452

of IAGOS observations to build a parameterization of the subgrid scale distribution of453

water vapor for an AGCM. This study has been conducted with the underlying assump-454

tion that the IAGOS dataset contains sufficient information to achieve our goal. How-455

ever, some limitations of IAGOS question this assumption. Gierens et al. (2007) argued456

that pooled data such as those used in this study cannot be directly employed in a sta-457

tistical cloud scheme, because each individual distribution (i.e., the distribution in one458

single batch) is mixed up in the resulting statistical distribution. They further argued459

that such data can only be used for validation. However, we think that if the initial ob-460

jective is well set, in particular if the variables we want our parameterization to depend461

upon are well defined, there is no such limitations to use observational data. What is rep-462

resented and what is hidden in the pooling process, and therefore in the parameteriza-463

tion, is not a result of the algorithm, but a decision as to which explanatory variables464

we want to use.465

The parameterization we have built could have also been derived from the output466

of high resolution models e.g., Cloud Resolving Models. Such models could help to pa-467

rameterize such a distribution, because they are resolved enough to study the mesoscale468

variability of water vapor, and low-resolved enough to consume a reasonable amount of469

resources per simulation. They have however their own limitations: for example, they470

rely on parameterizations of turbulence and cloud microphysics, which have their own471

deficiencies and uncertainties, particulary in extremely cold environements. Moreover,472

generalizing results for a wide range of temperatures and humidities, as done with the473

IAGOS dataset in this study, would still need a large number of simulations, large enough474

to become too computationnally expensive.475

AGCMs that use the distribution of water vapor to simulate the formation of new476

clouds assume that this distribution is representative of an atmospheric state that has477

not yet “experienced” condensation of the water vapor. However, if we see condensation478

as a fast process, real-world observations have, by nature, already experienced conden-479

sation and the distribution that we derive is more representative of an atmospheric state480

after than before condensation takes place. This means that distribution that we have481

derived needs to be slightly modified before it can be used in an AGCM. We address this482

issue by leaving free parameters in the parameterization which can be modified. We an-483

ticipate that up to five parameters can be left for tuning within some a priori range when484

the parameterization will be implemented in an AGCM.485

5.2 Technical limitations of IAGOS486

The IAGOS dataset consists of measurements made by in situ sensors, mounted487

on commercial aircraft. Operating commercial aircraft aims at maintaining the highest488

security level while minimizing the operating costs. This implies that aircraft avoid as489

much as possible convective regions, adopt trajectories that decrease the flight time, and490

perform other maneuvers that may bias the sampling of data. Most of all, flight paths491

are not well distributed around the globe (see Fig. 1). Therefore, measurements are bi-492

ased toward specific meteorological conditions and geographical regions, and our results493

cannot be representative of all the situations. The shape of the parameterized distribu-494

tion is relatively insensitive to the geographical region (see Section 4.4), but we cannot495

exclude the potential effect from a meteorological sampling bias.496

Additionally, in situ measurement are collected along 1-D lines in space. Nonethe-497

less, the parameterized distributions are meant to be used in 3D gridboxes. We there-498
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fore implicitly assume that the 3D variability is somewhat isotropic and fully character-499

ized with 1D transects.500

The limitations presented in this Section are inherent to the IAGOS dataset, and501

their associated biases can hardly be estimated. They can all modify the shape and scale502

of the humidity distributions studied. We assume that those biases have a low impact503

on the overall shape of the distributions and on the general evolution of skewness and504

standard deviation, as the sensitivity study shows almost no dependence to the geograph-505

ical and altitude region. However, having such biases means that the law used to fit the506

distributions, the empirical formulations found for the standard deviation and skewness,507

and finally the five parameters of the parameterization, are associated with uncertain-508

ties. We can account for a part of these uncertainties by providing ranges of plausible509

values for the parameters of the parameterization. With a modelling perspective, these510

ranges can be used to tune the AGCM using a framework such as proposed by Mignot511

et al. (2021).512

6 Summary and conclusion513

In this study, we have parameterized the distribution of water vapor at the meso-514

scale, typically 200 km, as a function of the average temperature and specific humidity.515

This parameterization is meant to predict supersaturation and cloud formation in an AGCM.516

The distributions of water vapor are built from the IAGOS observational product, which517

is composed of 27 years of airborne measurements of atmospheric properties, such as tem-518

perature and relative humidity, corresponding to a total of 257 millions measurements.519

We applied a new reconstruction algorithm to increase the quality and reliability of the520

data.521

The observed distributions of water vapor are expressed using relative humidity w.r.t.522

ice, and their standard deviation and skewness are investigated as a function of the av-523

erage temperature and specific humidity. Clear patterns ermerge for how standard de-524

viation and skewness evolve, with a noticeable increase in magnitude with increasing tem-525

perature. For a fixed temperature, the standard deviation shows a quadratic behavior,526

between 0 % to a relative humidity higher than 100 %. Beyond this value, it increases527

again but with a less clear pattern. Skewness is correlated to the standard deviation: when528

the latter has a quadratic behavior, skewness has a linear one, decreasing from a pos-529

itive value to a negative value with increasing average relative humidity. The zero value530

is reached at about the same average relative humidity as where standard deviation is531

maximum.532

The distributions are then fitted to a beta law, with a very high determination co-533

efficient. The parameters of the fitted distributions are parameterized with empirical func-534

tions of average temperature and humidity with five parameters, for potential direct ap-535

plication in AGCMs. The distributions are again fitted with this parameterization, and536

the determination coefficient is high, always greater than 0.917. In particular, the pa-537

rameterization predicts the observed ice supersaturation fraction with a very good ac-538

curacy. The sensitivity of the parameterization to different geographical regions is in-539

vestigated, and indicates that for a same set of parameters, the parameterization suc-540

cessfully captures different situations around the Earth, which is a major requirement541

for an implementation in an AGCM.542

This parameterization is designed to be implemented in AGCMs to better repre-543

sent the formation and evolution of high clouds and condensation trails. Future work544

will focus on testing its implementation and tuning in an AGCM.545
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Appendix A Reconstruction algorithm546

The idea of the algorithm is to reconstruct a reference time series of relative hu-547

midity w.r.t. liquid RHl, from the measured time series R̃Hl. RHl is a high-temporal res-548

olution time series, and R̃Hl is the time series measured by the capacitive hygrometer549

from IAGOS. Neis et al. (2015) (hereinafter N15) showed that R̃Hl can be modelled as550

an exponential moving average (EMA) smoothing of RHl. The EMA is defined as a re-551

cursive linear transformation of this quantity RHl(t), to the smoothed quantity R̃Hl(t),552

with a dependence on the sensor temperature TS :553

R̃Hl(t) = R̃Hl(t−∆t) + α(TS ,∆t) · (RHl(t)− R̃Hl(t−∆t)) (A1)

where ∆t is the time between two measurements and α is a function of TS and ∆t.554

The methodology of the reconstruction algorithm we use is based on N15, which555

itself relies on high-resolution colocated measurements of RHl from the CIRRUSIII and556

AIRTOSS-ICE campaigns (Krämer et al., 2016, 2020). The preprocessing and group-557

ing of the data follow the same procedure as in N15 and are not detailed here. The ma-558

jor difference between N15 and this work is that N15 provided an algorithm to construct559

R̃Hl from RHl, but in this study we provide an algorithm to reconstruct RHl from R̃Hl.560

A reconstruction of the time series in similar conditions has already been done by Ehrlich561

and Wendisch (2015), but the α term of Eq. A1 is constant in their work, while here we562

make it depend upon temperature.563

Following Ehrlich and Wendisch (2015), we first smooth the raw data to reduce the564

noise using a Blackman window, defined by:565

w(t) = 0.42− 0.5 cos(2π t/tB,1(TS)) + 0.08 cos(4π t/tB,1(TS)), (A2)

where tB,1 is the size of the window in seconds. As α, this value depends on the sensor566

temperature TS , and will need to be evaluated. We then reverse the EMA, using Eq. A1:567

RHl(t) = R̃Hl(t−∆t) + α(TS ,∆t)
−1 · (R̃Hl(t)− R̃Hl(t−∆t)) (A3)

with α(TS ,∆t) = 1− exp

(
− ∆t

τ(TS)

)
(A4)

Finally, to remove the additional noise created by this operation, and following once568

again Ehrlich and Wendisch (2015), we smooth the result with a new Blackman window569

following Eq. A2, with another window size tB,2.570

When we apply the methodology of N15 to this new reconstruction algorithm, we571

find the following formulations for the three temperature-dependent calibration functions572

τ , tB,1 and tB,2:573

τ(TS) = exp
(
−80.5 + 0.765 TS − 0.00171 T 2

S

)
(A5)

tB,1(TS) = exp
(
−26.3 + 0.343 TS − 0.000886 T 2

S

)
(A6)

tB,2(TS) = max (1, 68.5− 0.25 TS) (A7)

We compute the determination coefficient between the RHl time series measured574

by the high-resolution instrument and those (1) measured by the IAGOS instrument,575

(2) measured by the IAGOS instrument to which we applied the reconstruction algorithm,576

and (3) measured by the IAGOS instrument to which we applied a moving average of577

∆t = 1 min, as done in Gierens et al. (2007). This is done for the 12 AIRTOSS flights578

(AIR1 to AIR12), and to 5 of the CIRRUSIII flights (CIR1 to CIR5) for which the IA-579

GOS instrument was installed. Our reconstruction algorithm is overall increasing the qual-580

ity of the IAGOS measurements (Table A1). However, an important assumption of this581

algorithm is that it can be applied with the same parameters to all the IAGOS flights,582
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Table A1. Determination coefficient R2 computed between the time series of the high-

resolution measurements of RHl and the IAGOS measurements (raw), the IAGOS measurements

to which the reconstruction algorithm is applied (reconstruction), and the IAGOS measurements

to which an averaging procedure of ∆t = 1 min is applied (average), for 17 flights.

Flight R2 raw R2 reconstruction R2 average

AIR1 0.891 0.965 0.885
AIR2 0.829 0.857 0.827
AIR3 0.938 0.960 0.935
AIR4 0.826 0.843 0.817
AIR5 0.863 0.891 0.860
AIR6 0.775 0.737 0.753
AIR7 0.983 0.981 0.937
AIR8 0.576 0.566 0.554
AIR9 0.968 0.973 0.951
AIR10 0.947 0.960 0.926
AIR11 0.964 0.985 0.959
AIR12 0.968 0.989 0.960
CIR1 0.484 0.691 0.486
CIR2 0.758 0.701 0.758
CIR3 0.597 0.732 0.602
CIR4 0.716 0.710 0.722
CIR5 0.668 0.735 0.672
Mean 0.809 0.840 0.800

and that the quality of the data will overall increase. This assumption has only been val-583

idated for the 17 used flights which flown in similar meteorological conditions. Addition-584

nal co-located measurements using high-resolution sensors along with the IAGOS sen-585

sors in different meteorological conditions would strenghten this assumption.586

Appendix B Properties of the beta law587

The average µ, the standard deviation σ and the skewness γ of a beta law are ex-588

pressed as a function of the location parameter a, the scale parameter c−a and the two589

shape parameters p and q as:590 
µ = µ̄−a

c−a
σ = σ̄

c−a
γ = 2(q−p)

√
p+q+1

(p+q+2)
√
pq

(B1)

with

{
µ̄ = p

p+q

σ̄ =
√

pq
(p+q)2(p+q+1)

Therefore, the three parameters c, p and q can be determined as a function of the591

average, the standard deviation, the skewness and the location parameter such that:592 
p = ν

ξ2(ν+1)+1

q = ν − p
c = a+ p+q

p (µ− a)
(B2)

with ν = 2 ξ
2−γξ−1
γξ−2ξ2

and ξ = σ
µ−a
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Open Research Section593

The processing code will be made freely available on Zenodo if the paper is accepted.594

In the meantime, it is accessible on a gitlab: https://gitlab.in2p3.fr/audran.borella/595

iagos-water-vapor-distributions-parameterization. The IAGOS data can be down-596

loaded from the IAGOS data portal at https://doi.org/10.25326/20 (Boulanger et al.,597

2018). This study used IAGOS data on their 01/01/2024 version.598
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Kärcher, B. (2003). A parameterization of cirrus cloud formation: Heterogeneous682

freezing. Journal of Geophysical Research, 108 (D14), 4402. doi: 10.1029/683

2002JD003220684
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