001     1032607
005     20241125211005.0
024 7 _ |a 10.34734/FZJ-2024-06375
|2 datacite_doi
037 _ _ |a FZJ-2024-06375
100 1 _ |a Yin, Hao
|0 P:(DE-Juel1)164856
|b 0
|e First author
|u fzj
245 _ _ |a Epitaxial growth of mono- and (twisted) multilayer graphene on SiC(0001)
260 _ _ |c 2024
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1732520330_24381
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a To take full advantage of twisted bilayers of graphene or other two-dimensional materials, it is essential to precisely control the twist angle between the stacked layers, as this parameter determines the properties of the heterostructure. In this context, a growth routine using borazine as a surfactant molecule on SiC(0001) surfaces has been reported, leading to the formation of high-quality epitaxial graphene layers that are unconventionally oriented, i.e., aligned with the substrate lattice (G-R0∘) [Bocquet et al. Phys. Rev. Lett. 125, 106102 (2020)]. Since the G-R0∘ layer sits on a buffer layer, also known as zeroth-layer graphene (ZLG), which is rotated 30∘ with respect to the SiC substrate and still covalently bonded to it, decoupling the ZLG-R30∘ from the substrate can lead to high-quality twisted bilayer graphene (tBLG). Here we report the decoupling of ZLG-R30∘ by increasing the temperature during annealing in a borazine atmosphere. While this converts ZLG-R30∘ to G-R30∘ and thus produces tBLG, the growth process at elevated temperature is no longer self-limiting, so that the surface is covered by a patchwork of graphene multilayers of different thicknesses. We find a 20% coverage of tBLG on ZLG, while on the rest of the surface tBLG sits on one or more additional graphene layers. In order to achieve complete coverage with tBLG only, alternative ways of decoupling the ZLG, e.g., by intercalation with suitable atoms, may be advantageous.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Hutter, Mark
|0 P:(DE-Juel1)180912
|b 1
|u fzj
700 1 _ |a Wagner, Christian
|0 P:(DE-Juel1)140276
|b 2
|u fzj
700 1 _ |a Tautz, Frank Stefan
|0 P:(DE-Juel1)128791
|b 3
|u fzj
700 1 _ |a Bocquet, Francois C
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kumpf, Christian
|0 P:(DE-Juel1)128774
|b 5
|e Corresponding author
|u fzj
856 4 _ |u https://arxiv.org/abs/2411.11684
856 4 _ |u https://juser.fz-juelich.de/record/1032607/files/Yin%20et%20al%20tBLG%20%2B%20multilayers%20LEEM%20arXiv%202411.11684v1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1032607
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164856
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180912
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)140276
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128791
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128774
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-3-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21