
Scaling and performance portability of the particle-in-cell scheme for plasma
physics applications through mini-apps targeting exascale architectures∗

Sriramkrishnan Muralikrishnan† Matthias Frey‡ Alessandro Vinciguerra§

Michael Ligotino§ Antoine J. Cerfon¶ Miroslav Stoyanov‖ Rahulkumar Gayatri∗∗

Andreas Adelmann††

Abstract

We perform a scaling and performance portability study of

the electrostatic particle-in-cell scheme for plasma physics

applications through a set of mini-apps we name “Alpine”,

which can make use of exascale computing capabilities. The

mini-apps are based on IPPL, a framework that is designed

around performance portable and dimensionality indepen-

dent particles and fields. We benchmark the simulations

with varying parameters, such as grid resolutions (5123 to

20483) and number of simulation particles (109 to 1011), with

the following mini-apps: weak and strong Landau damping,

bump-on-tail and two-stream instabilities, and the dynamics

of an electron bunch in a charge-neutral Penning trap. We

show strong and weak scaling and analyze the performance of

different components on several pre-exascale architectures,

such as Piz-Daint, Cori, Summit, and Perlmutter. While

the scaling and portability study helps to identify the per-

formance critical components of the particle-in-cell scheme

on the current state-of-the-art computing architectures, the

mini-apps by themselves can be used to develop new algo-

rithms and optimize their high performance implementations

targeting exascale architectures.

1 Introduction

Heterogeneous computing architectures are unavoidable
as scientific computing moves toward the era of exascale
computing. This is already evident from some of

∗The full version of the paper can be accessed at https:

//arxiv.org/abs/2205.11052
†Jülich Supercomputing Centre, Forschungszentrum Jülich

GmbH, 52425 Jülich, Germany.
‡Mathematical Institute, University of St Andrews, KY16 9SS,

UK.
§ETH Zurich, Switzerland.
¶Courant Institute of Mathematical Sciences, New York Uni-

versity, New York NY 10012, USA.
‖Oak Ridge National Laboratory, Oak Ridge, USA.

∗∗National Energy Research Scientific Computing Center,

Berkeley, CA, USA.
††Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen,

Switzerland.

the supercomputers listed in Table 1, which consist of
different types of CPUs and GPUs.

The programming paradigms or languages used
with these architectures can differ significantly from one
another. As a result, naively written codes could require
rewrites of considerable portions of the codes simply
to achieve compatibility with a given architecture, to
say nothing of efficiency. In this context, performance
portability is a key criterion for current and future
simulation codes.

In the plasma physics community, particle-in-cell
(PIC) schemes have been widely used for the simula-
tion of kinetic plasmas since their inception [1, 2, 3].
The attractive features of PIC schemes include simplic-
ity, ease of parallelization, and robustness for a wide
variety of physical scenarios. Because of their flexibil-
ity and versatility, PIC schemes are employed in many
production level plasma simulation and particle accel-
erator codes, such as TRISTAN-MP [5, 6], ORB5 [7],
XGC [8], OSIRIS [9], IMPACT-T [10], OPAL [11] and
Warp-X [12], to name a few.

Some of these production codes have already be-
gun their journey toward performance portability as ev-
idenced in [13, 14]. It is expected that a lot more will
also do so in the near future in order to benefit from the
high performance of current and future advanced com-
puting architectures. Mini-applications (or mini-apps)
which are performance portable can greatly help in this
respect [15]. These are light-weight proxy codes which
contain performance critical components of the appli-
cation codes. They can be used for implementing new
algorithms, optimizing implementations, and providing
reliable performance expectations for the real applica-
tion of interest on different computing architectures [15].
As such, mini-apps serve as an interface between ap-
plied mathematics, high performance computing, and
production codes.

Our objective in this work is to study the perfor-
mance portability and scaling of the components of
electrostatic PIC schemes through a set of mini-apps

Copyright © 2024
Copyright for this paper is retained by authors26

D
ow

nl
oa

de
d

11
/2

5/
24

 to
 1

34
.9

4.
2.

14
2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://arxiv.org/abs/2205.11052
https://arxiv.org/abs/2205.11052

Name Location CPUs GPUs
Perlmutter NERSC, USA AMD Milan NVIDIA A100

Summit ORNL, USA IBM POWER9 NVIDIA V100
Sunway TaihuLight NSCC-Wuxi, China Sunway SW26010 none

Fugaku RIKEN, Japan ARM A64FX none
Frontier ORNL, USA AMD EPYC AMD Instinct
Aurora ANL, USA Intel Xeon Intel Xe

Table 1: An incomplete list of some of the extreme scale computing systems showing the diversity of the HPC
landscape.

(Alpine1) with applications in plasma physics and par-
ticle accelerator modeling, targeting exascale architec-
tures. In the present article, we consider physical sit-
uations for which the electrostatic assumption is jus-
tified and collisions can be neglected. In future work,
we plan to extend the study by enriching the collec-
tion of mini-apps with electromagnetic examples, which
may or may not include collisions and electron pair
production. The mini-apps are built using the per-
formance portable library Independent Parallel Particle
Layer (IPPL), which is sketched in Section 2. The con-
tributions of the current work are summarized below:

• Alpine provides a test bed for implementing new al-
gorithms and/or novel implementations of existing
algorithms related to PIC schemes in the context
of exascale architectures in a performance portable
way.

• The performance study in this work provides im-
portant insights on how different components of
electrostatic PIC schemes function on different ar-
chitectures.

• This work serves as a guidance for the plasma
PIC community to identify the major causes of
performance bottlenecks and better prepare for
exascale architectures.

• So far, portable exascale PIC studies have mostly
been conducted for PIC schemes designed for elec-
tromagnetic plasma models [14, 16]. To the best of
our knowledge, this is the first study which consid-
ers the performance of a PIC scheme for an electro-
static plasma model in the portable exascale con-
text. The fundamental difference comes from the
fact that we need to solve a Poisson equation in
electrostatic PIC schemes, which is global and has
relatively less scalability than the purely local ex-
plicit electromagnetic PIC schemes.

1ALPINE: A set of performance portable pLasma physics
Particle-in-cell mINi-apps for Exascale

This paper is organized as follows. Section 2 de-
scribes the IPPL library. The electrostatic PIC scheme
implemented in the mini-apps is described in Section 3.
Section 4 describes the mini-apps along with their phys-
ical parameters and verification studies. The strong and
weak scaling results, as well as the performance analy-
sis of different components on four different pre-exascale
architectures, are presented in Section 5. Finally, we
summarize our results in Section 6 and propose direc-
tions for future work.

2 IPPL

The Independent Parallel Particle Layer (IPPL) is a
C++ library that was developed about 20 years ago
and was inspired by and partially based on POOMA
[17]. The general framework is designed to enable
the rapid development of Lagrangian, Eulerian, and
hybrid Eulerian-Lagrangian schemes. IPPL uses the
Message Passing Interface (MPI) paradigm to distribute
fields and particles across multiple processes. It also
makes use of expression templates [18] to speed up the
computation of mathematical operations on field and
particle data.

Besides revising IPPL to the latest C++20 stan-
dard, we replaced the core data structures of IPPL with
Kokkos [19, 20] data structures to enable performance
portability across various hardware architectures.

The container holding the particles is essentially
a struct of arrays where each particle attribute is in
principle a Kokkos View enhanced with expression tem-
plates. Note that the underlying data type of a particle
attribute is not restricted to scalar types; hence vector
attributes (e.g. position and velocity) themselves are ar-
rays of struct. The communication of particles among
processes follows a pack-send-receive-unpack strategy
where all particle attributes are serialized (or packed)
into a single buffer and then deserialized (or unpacked)
on the receiving end. These communication buffers are
obtained from a memory pool with a user specified over-
allocation parameter to avoid frequent memory alloca-
tions and deallocations, which are costly on GPUs.

Copyright © 2024
Copyright for this paper is retained by authors27

D
ow

nl
oa

de
d

11
/2

5/
24

 to
 1

34
.9

4.
2.

14
2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

To ensure an even workload across all MPI pro-
cesses, the particles are redistributed regularly using the
orthogonal recursive bisection algorithm [21]. For this
purpose, the particle densities are interpolated onto the
grid, which is then divided into subregions, each with
approximately the same number of particles. The par-
ticles are then passed to the MPI process that occupies
the subregion into which they fall.

As with the particle attributes, the fields are es-
sentially Kokkos Views enhanced with expression tem-
plates. To share field data across process domain bound-
aries, IPPL uses halo (guard or ghost) cells. Halo data,
like particle data, are exchanged via buffers. The num-
ber of halo layers can be set for each field independently.

An interface to heFFTe [22] enables us to compute
fast Fourier transforms (FFT) in a portable manner.
For more details on IPPL the readers are referred to
Section 2 in [34].

3 Particle-in-cell method

3.1 Vlasov-Poisson system We consider the non-
relativistic Vlasov-Poisson system with a fixed magnetic
field and introduce the PIC method in that setting.
The electrons are immersed in a uniform, immobile,
neutralizing background ion population and the electron
dynamics is given by

(3.1)
∂f

∂t
+ v · ∇xf +

qe
me

(E + v ×Bext) · ∇vf = 0,

where E = Esc + Eext, and the self-consistent field due
to space charge is given by

(3.2) Esc = −∇ϕ, −∆ϕ = ρ/ε0 = (ρe − ρi) /ε0.

In equation (3.1), f(x,v, t) is the electron phase-space
distribution and qe, me, and ε0 are the electron charge,
mass, and permittivity of free space, respectively. The
total electron charge in the system is given by Qe =
qe

∫ ∫
fdxdv, the electron charge density by ρe(x) =

qe
∫
fdv, and the constant ion density by ρi = Qe/

∫
dx.

Throughout this paper we use bold letters for vectors
and non-bold letters for scalars. The numerical meth-
ods and algorithms we discuss in this article can be
easily applied to situations involving nonuniform exter-
nal magnetic fields with finite curvature. On the other
hand, physical systems for which relativistic or electro-
magnetic effects play a significant role will generally re-
quire different approaches, and the corresponding codes
will perform differently on large scale high performance
computing architectures.

The particle-in-cell method discretizes the phase
space distribution f(x,v, t) in a Lagrangian way by
means of macro-particles (hereafter referred to as “par-
ticles” for simplicity). At time t = 0, the distribution f

is sampled, which leads to the creation of the computa-
tional particles. Subsequently, a typical computational
cycle in PIC consists of the following steps:

1. Assign a shape function - e.g. cloud-in-cell [2] - to
each particle p and deposit the electron charge onto
an underlying mesh. This is known as “scatter” in
PIC.

2. Use a grid-based Poisson solver to compute ϕ by
solving −∆ϕ = ρ/ε0 and differentiate ϕ to get
the electric field E = −∇ϕ on the mesh with
appropriate boundary conditions.

3. Interpolate E from the grid points to particle
locations xp using the same interpolation function
as in the scatter operation. This is typically known
as “gather” in PIC.

4. By means of a time integrator, advance the particle
positions and velocities using

dvp

dt
=

qe
me

(E + v ×Bext) |x=xp ,(3.3)

dxp

dt
= vp.(3.4)

3.2 Numerical implementation In our implemen-
tation we use the non-dimensional form of the
Vlasov-Poisson system and we follow the same non-
dimensionalization as in [23] (see Table I). Now, we
succinctly describe the numerical algorithms that are
used for the four PIC steps enumerated in the previous
section in all our mini-apps.

First, we do a random sampling of the particles
based on the distribution function f using inverse
transform sampling [24]. It is important to create the
particles locally in a load balanced manner2 on each
MPI rank to reduce the otherwise high memory and
communication costs.

We use a cell-centered grid and cloud-in-cell shape
function for the interpolation from particles to grid and
vice versa. We use periodic boundary conditions in all
directions and, since our grid spacings in the x, y and z
directions are constants (although potentially different
in each direction), we use an FFT-based spectral solver
for the computation of the potential and electric field
from the charge density. The FFTs in the field solver
are computed using the heFFTe library. For the time
integration, we use the synchronized form of the Boris
scheme as given in equations 4(a) - 4(c) of [25], which
gives both the velocity and position of the particles at
integer time steps.

2In this paper, when we mention load balanced or imbalanced

configurations, it is only with respect to particles unless we
explicitly mention the fields.

Copyright © 2024
Copyright for this paper is retained by authors28

D
ow

nl
oa

de
d

11
/2

5/
24

 to
 1

34
.9

4.
2.

14
2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

0 10 20 30

time

10!3

10!2

10!1

100

101

R E
2 x
d
V

. = !0:3066

0 50 100

time

10!2

100

102

. = !0:562

. = 0:168

Figure 1: Landau damping of the electric field energy
in the x-direction (

∫
V
E2

xdV , where V is the total
simulation volume) as a function of time for weak
(left) and strong (right) damping cases. The damping
rates match well with the analytical values γ shown by
the dashed lines as well as the results in [26]. The
number of mesh points, number of particles and the
time step in these simulations are 323; 83, 886, 080 and
0.05 respectively.

4 The Mini-Apps

In this section, we briefly describe the electrostatic
plasma physics problems that we consider for the scaling
and performance study.

4.1 Landau damping The first problem we consider
is Landau damping in the weak and strong damping
regimes. It is a classical problem which has been
studied extensively in the literature [4, 26, 27, 28,
29]. The availability of analytical results makes it an
excellent candidate for our verification and performance
study. Similar to [4], we consider the following initial
distribution

f(t = 0) =
1

(2π)
3/2

e−|v|2/2 (1 + α cos(kx))

(1 + α cos(ky)) (1 + α cos(kz))

in the domain [0, L]
3
, where L = 2π/k is the length in

each dimension. We choose the following parameters for
our weak Landau damping tests: k = 0.5, α = 0.05. The
total electron charge based on our initial distribution is
Qe = −L3. In the case of strong Landau damping, we
use a stronger perturbation parameter α = 0.5. The
other parameters are the same as those for the weak
damping case. The presence of a stronger perturbation
parameter necessitates particle load balancing as will
be shown in Figure 7. As a verification, we show in
Figure 1 the damping of the electric field energy in the
x-direction for the weak and strong damping cases. Our
results agree well with the analytical rates as well as the
results in [26].

4.2 Bump-on-tail/Two-stream instability The
second mini-app we consider is the two-stream or bump-
on-tail instability problem. Similar to Landau damp-
ing, this is another classical benchmark problem stud-
ied in the literature [26, 27, 28, 29], with analytical es-
timates for the growth rates, which can be calculated
from the dispersion relation derived from the linearized
equations.

We consider the following initial distribution of
electrons

f(t = 0) =
1

σ3 (2π)
3/2

{
(1 − ϵ) e−

|v−vb1|2

2σ2 + ϵe−
|v−vb2|2

2σ2

}
(1 + α cos(kz))

in the domain [0, L]
3
, where L = 2π/k is the length in

each dimension. Depending on the choice of parameters,
we get two flavors of this example. With ϵ = 0.5,
σ = 0.1, k = 0.5, α = 0.01, vb1 = {0, 0,−π/2},
and vb2 = {0, 0, π/2} we get the two-stream instability
problem studied in [26]. On the other hand, choosing
ϵ = 0.1, σ = 1/

√
2, k = 0.21, α = 0.01, vb1 = {0, 0, 0}

and vb2 = {0, 0, 4} we get the bump-on-tail instability
problem similar to [30]. The total charge Qe is chosen
in the same way as in the Landau damping example.

0 10 20 30 40 50

time

10!2

100

102

104

R E
2 z
d
V

. = 0:4952

0 10 20 30 40 50

time

10!1

100

101

102

103

. = 0:356

Figure 2: Electric field energy (
∫
V
E2

zdV , where V is
the total simulation volume) in the z-direction as a
function of time for the two-stream (left) and bump-on-
tail instability (right) test cases. The growth rates agree
well with the analytical values γ shown by the dashed
lines as well as the results in [26]. The number of mesh
points, number of particles and the time step in these
simulations are 323; 83, 886, 080 and 0.05 respectively.

In both cases, the electric field energy grows as a
function of time as shown in Figure 2. Similar to Lan-
dau damping, we see very good agreement with the an-
alytical rates as well as the results in [26]. Even though
we simulate the bump-on-tail or two-stream instability
in 3D-3V in our mini-app, the essential physics for the

Copyright © 2024
Copyright for this paper is retained by authors29

D
ow

nl
oa

de
d

11
/2

5/
24

 to
 1

34
.9

4.
2.

14
2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

initial distribution selected occurs predominantly in the
z-direction, at least for early times.

4.3 Electron dynamics in a charge neutral Pen-
ning trap Our next mini-app corresponds to the dy-
namics of electrons in a Penning trap with a neutraliz-
ing static ion background, as in [31]. This problem in-
volves bunching of electrons in the configuration space
and, therefore, presents challenges in terms of field and
particle load balancing. The initial conditions for this
example, as well as the electron dynamics they lead to,
are very similar to that of cyclotrons [32, 33, 31]. Since
the particle accelerator library OPAL [11] will include
the portable version of IPPL in the near future, this ex-
ample is of interest from the point of view of cyclotron
simulations.

Regarding the parameters for this problem, we
follow the same setup as in [31]. The domain is [0, L]

3
,

where L = 20. The external magnetic field is given
by Bext = {0, 0, 5} and the quadrapole external electric
field by

Eext =

{
−15

L

(
x− L

2

)
,−15

L

(
y − L

2

)
,

30

L

(
z − L

2

)}
.

For the initial conditions, we sample the phase
space using a Gaussian distribution in all the variables.
The mean and standard deviation for all the velocity
components are 0 and 1, respectively. While the mean
for all the configuration space variables is L/2, the
standard deviations are 0.15L, 0.05L and 0.2L for x,
y, and z, respectively. The total electron charge is
Qe = −1562.5.

5 Scaling results

5.1 Setup In this section, we present representative
strong and weak scaling results as well as the perfor-
mance of different components for the mini-apps de-
scribed in Section 4. We do not present the scaling
results for the two-stream and bump-on-tail instabili-
ties, as they are very similar to those of the weak Lan-
dau damping study; the timings differ by at most ±10
percent for the most part.

For the strong scaling, we consider the mesh and
particle setups shown in Table 2. Both the cases have 8
particles per cell.

For the GPU simulations, we use 1 MPI rank
per GPU and no OpenMP thread-based parallelism,
whereas for the CPU simulations we use 1 MPI rank
per node and take the number of OpenMP threads cor-
responding to the total number of CPU cores in that
node. Basically, we use MPI for communication between
GPUs both within a node and between nodes, whereas
for CPU-based simulations, we use MPI only for com-

Case Grid (Nc) Total number of Particles (Np)
A 5123 1, 073, 741, 824
B 10243 8, 589, 934, 592

Table 2: Cases considered for the strong scaling study
with different number of grid points and particles.

munication between nodes while OpenMP-based shared
memory parallelism is used within a node. This setup
helps to minimize the particle and field communication
costs. Further setup details regarding the reproducibil-
ity of the experiments along with the reason for the
different choices is given in Appendix A.

5.2 Performance comparison across different
architectures In this section, we consider the weak
Landau damping mini-app and evaluate its performance
across different architectures. For this purpose we
consider the CPU and GPU architectures in Table 3.

We utilize all the GPUs in each node with the GPU
builds, whereas with the CPU builds we use 32 out of
36 and 64 out of 68 available cores per node on the Piz
Daint and Cori systems, respectively. Multithreading is
turned off for the CPU runs.

In Figure 3(a) the total time and efficiencies are
compared across the three GPU architectures for the
strong scaling study corresponding to cases A and B
(cf. Table 2). In the case of Perlmutter, we can start the
scaling study with half as many GPUs as the Piz Daint
and Summit partitions, thanks to the higher memory
configuration of A100 GPUs (40 GB) compared to those
of P100 and V100 GPUs (16 GB). In terms of the ab-
solute wall time per simulation time step, Perlmutter is
the fastest, followed by Summit and then Piz Daint. In
terms of scaling efficiencies, Piz Daint has the highest
efficiency, followed by Perlmutter and then Summit. We
can understand the total time and efficiencies better by
looking at the cumulative computation and communi-
cation kernels (see Table 4 in Appendix A for the list
of computation and communication kernels) across the
three architectures for cases A and B in Figure 4(a).
The computation kernels of Summit have a speedup of
3 − 4× compared to Piz Daint until the scaling stops,
whereas Perlmutter computation kernels have a speedup
of roughly 10× compared to Piz Daint. This is because
of the architecture and CUDA compute capability of
the GPUs: the latest A100 GPUs are more powerful
than the V100s, which in turn are more powerful than
the P100 GPUs. In terms of communication costs, Perl-
mutter has the lowest communication cost for both cases
A and B. Comparing Summit and Piz Daint, for case
A Summit has a higher communication cost than Piz

Copyright © 2024
Copyright for this paper is retained by authors30

D
ow

nl
oa

de
d

11
/2

5/
24

 to
 1

34
.9

4.
2.

14
2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

GPU architectures CPU architectures
Piz Daint P100 Piz Daint (Intel Xeon E5-2695 v4 @ 2.1GHz)
Summit V100 Cori KNL (Intel Xeon Phi 7250 @ 1.4 GHz)
Perlmutter A100

Table 3: List of CPU and GPU partitions used for the performance comparison across different architectures.

8 128 2048

No. of GPUs

10!1

100

ti
m
e/
ti
m
e
st
ep
(s
)

8 128 2048

No. of GPUs

0

20

40

60

80

100

%
e/
ci
en
cy

Piz Daint P100, Case A Summit V100, Case A
Perlmutter A100, Case A Piz Daint P100, Case B
Summit V100, Case B Perlmutter A100, Case B

(a) Total time (left) and efficiency (right) on different GPU

architectures

4 64 512

No. of CPU nodes

100

101

ti
m

e/
ti

m
e

st
ep

(s
)

4 64 512

No. of CPU nodes

0

20

40

60

80

100

%
e/

ci
en

cy

Piz Daint CPU, Case A Cori KNL, Case A
Piz Daint CPU, Case B Cori KNL, Case B

(b) Total time (left) and efficiency (right) on different CPU

architectures

Figure 3: Comparison of different GPU architectures
(top row) and CPU architectures (bottom row) with
respect to strong scaling for the weak Landau damping
mini-app.

Daint, whereas for case B both are comparable. The
higher communication cost of Summit is also reflected
in the scaling of the computation kernels, where the
field solver loses scaling earlier than on Piz Daint and
Perlmutter.

We now consider the CPU architectures, and com-
pare the strong scaling performance on Piz Daint and
Cori KNL nodes. In Figure 3(b) we show the total time
and efficiency for these two systems. For small node
counts, the wall time per simulation time step on Cori

nodes is slightly less than on Piz Daint nodes. How-
ever, the better scaling and efficiency of Piz Daint even-
tually leads to a lower runtime than Cori. From the
computation and communication kernels in Figure 4(b)
we notice that the computation kernels perform slightly
better on Cori than on Piz Daint, but the communica-
tion time of Cori is higher, which eventually leads to
a lower efficiency than Piz Daint. However, overall the
performance per node of the two systems are very sim-
ilar.

We refer the readers to [34] (Section 5.2.1) for the
strong scaling and timings of individual computation
and communication kernels on Piz Daint GPU and CPU
architectures. The individual kernels on other GPU sys-
tems, i.e. Summit and Perlmutter, showed a similar
scaling trend to Piz Daint. In terms of the timings, the
field solve (solve) is the dominant computational ker-
nel and the particles communication (updateParticle)
is the dominant communication kernel. Their compari-
son with respect to the timings on Piz Daint is similar
to that of the cumulative computation and communi-
cation kernels in Figure 4(a). The other computational
kernels showed a maximum of up to 2× reduction with
respect to the timings on Piz Daint whereas the field
communication kernels are comparable to that of Piz
Daint. On the CPU systems, the nodewise performance
of individual kernels on Cori are very similar to that of
the Piz Daint CPU nodes.

In Section 5.2.2 of [34] we considered two more cases
with a higher number of particles per cell (64 as opposed
to 8 considered here) and compared them with cases A
and B.

5.3 Weak scaling We first describe the weak scaling
setup for the weak Landau damping test problem before
discussing the results. From now on, we will consider
only the Piz Daint CPU and GPU architectures in Table
3. For GPU simulations, we take the base case for
1 GPU as a 256 × 1282 grid, whereas for CPUs we
take a 512 × 2562 grid, because of the greater memory
availability. For both CPUs and GPUs our simulations
have 8 particles per cell. The maximum grid size
and number of particles for the GPU simulations are
Nc = 20483 and Np = 68, 719, 476, 736 on 2048 GPUs,
whereas for CPU simulations they are Nc = 4096×20482

Copyright © 2024
Copyright for this paper is retained by authors31

D
ow

nl
oa

de
d

11
/2

5/
24

 to
 1

34
.9

4.
2.

14
2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

8 32 256

No. of GPUs

10!1

100

ti
m

e/
ti
m

e
st

ep
(s

)

64 256 2048

No. of GPUs

10!1

100

computation-Piz Daint communication-Piz Daint
computation-Summit communication-Summit
computation-Perlmutter communication-Perlmutter

(a) Computation vs communication kernels for case A (left) and

case B (right)

4 16 64

No. of CPU nodes

10!1

100

101

ti
m
e/
ti
m
e
st
ep
(s
)

32 128 512

No. of CPU nodes

10!1

100

101

computation-Piz Daint communication-Piz Daint
computation-Cori KNL communication-Cori KNL

(b) Computation vs communication kernels for case A (left) and

case B (right)

Figure 4: Timings of computation and communication
kernels for different GPU architectures (top row) and
CPU architectures (bottom row) with respect to strong
scaling for the weak Landau damping mini-app.

and Np = 137, 438, 953, 472 on 512 nodes (16,384 cores).
In Figure 5(a), we can see that the field solve is

the dominant computation kernel. All the computation
kernels scale ideally, except for the field solve and total
runtime, as we have already seen for the strong scaling
study due to the communication. The scaling of the
field solver is also close to ideal starting from 8 GPUs or
CPU nodes. This can be explained as follows. Starting
from 8 MPI ranks, each process/core has a brick of field
data and the number of transposes performed during
the FFT remains the same. On the other hand, with
1, 2, or 4 ranks, we have either no communication or
fewer transposes due to slab or pencil decompositions.
Hence they take less time than on 8 ranks. The total
time is mostly dictated by the field solve, except for
the last few data points, where communication kernels
dominate. We also see a linear increase asymptotically

1 8 64 512 2048

No. of GPUs

10!3

10!2

10!1

100

101

102

ti
m

e/
ti
m

e
st

ep
(s

)

1 8 64 512 2048

No. of CPU nodes

10!3

10!2

10!1

100

101

102

total gather particleBC pushPosition

scatter solve pushVelocity ideal

(a) Computation kernels on GPUs (left) and CPUs
(right)

1 8 64 512 2048

No. of GPUs

10!3

10!2

10!1

100

101

102

ti
m

e/
ti
m

e
st

ep
(s

)

1 8 64 512 2048

No. of CPU nodes

10!3

10!2

10!1

100

101

102

accumulateHalo fillHalo updateParticle

(b) Communication kernels on GPUs (left) and CPUs

(right)

100 101 102 103

No. of GPUs or CPU nodes

107

108

109

1010

1011

P
a
rt

ic
le
s
p
u
sh

ed
p
er

se
co

n
d

GPUs
CPU nodes

(c) Particle push rate comparison

between GPUs and CPUs

Figure 5: Weak Landau damping. Weak scaling of
computation, communication kernels and particle push
rate on GPUs and CPUs.

in the particle communication cost in Figure 5(b), due
to the particle search and communication. In Figure
5(c), we show the number of particles pushed per second
on GPUs and CPUs as measured in this weak scaling
study. This metric is obtained by dividing the total
number of particles by the wall time per simulation
time step. We get a maximum of approximately 1010

particles per second on GPUs and 3 × 109 particles per
second on CPUs.

5.4 Comparison to electromagnetic PIC Elec-
tromagnetic (EM) PIC with explicit time integration

Copyright © 2024
Copyright for this paper is retained by authors32

D
ow

nl
oa

de
d

11
/2

5/
24

 to
 1

34
.9

4.
2.

14
2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

is purely local as the field equations are the hyper-
bolic Maxwell’s equations. This is in contrast to the
global Poisson solve involved in the electrostatic (ES)
PIC which weakens its scalability and performance com-
pared to EM PIC. Moreover, due to the CFL condition
the time step size of the EM PIC should be such that the
particles cannot travel more than one mesh cell. This
helps to narrow the search of the particles during par-
ticle communication to only field neighbors. In ES PIC
due to the lack of the CFL condition the time step size
is only limited by the stability and accuracy of the time
integrator used to push the particles and hence the par-
ticles can travel beyond the field neighbors. This calls
for a global search which again limits the scalability.
Because of these two reasons, the throughput as mea-
sured by particles pushed per second is usually orders
of magnitude lower for ES PIC compared to EM PIC
(cf. Table 1 in [35]).

(a) Initial density (b) GPUs=128 (c) GPUs=2048

Figure 6: Strong Landau damping: Cross sectional view
of the initial particle density profile showing high (red)
and low (blue) densities, and particle load balanced
domain decompositions for 128 and 2048 GPUs.

5.5 Strong Landau damping We consider the case
of strong Landau damping, which corresponds to a
larger perturbation parameter α as compared to the
weak damping case. This leads to a higher particle load
imbalance among the MPI ranks with equal distribution
of field domains. This in turn leads to an increased total
time for the simulation compared to the load balanced
case, as the MPI rank which takes the maximum
time for the computation and communication kernels
determines the overall simulation time. An even more
important problem is the memory requirement, as the
GPU or CPU node which has the greatest number of
particles may not have enough memory to store them
all, while the memory in the other GPUs or CPU nodes
is under-utilized. Hence, particle load balancing is of
critical importance in this example. We create the
particles in a balanced way by means of orthogonal
recursive bisection using the initial analytical density
profile as shown in Figure 6(a). Figures 6(b) and 6(c)
show the representative initial particle load balanced

128 512 2048

No. of GPUs

100

ti
m

e/
ti
m

e
st

ep
(s

)

128 512 2048

No. of GPUs

100

total computation communication ideal

(a) Case B: Computation vs communication kernels with (left) and

without (right) load balancing

128 512 2048

No. of GPUs

10!3

10!2

10!1

100

ti
m

e/
ti
m

e
st

ep
(s

)

128 512 2048

No. of GPUs

10!3

10!2

10!1

100

accumulateHalo fillHalo

updateParticle loadBalance

(b) Case B: Communication kernels with (left) and without (right)

load balancing

Figure 7: Strong Landau damping. Strong scaling on
GPUs: comparison of scaling and performance with
(left) and without (right) particle load balancing for case
B.

domain decompositions we obtain for 128 and 2048
GPUs. After the initial load balancing, we perform the
balancing if the imbalance percentage given by

imbalance% =

(
|nloc − nideal|

Np

)
× 100

in any rank exceeds a given threshold. Here, nloc is
the local number of particles in each rank and nideal =
Np/Nranks is the ideal local number of particles. We
set the threshold to 1% for this problem, as well as
the Penning trap example in the next section, based
on numerical experiments.

In Figure 7, we compare the results for case B
with and without load balancing on GPUs. We do not
show results for case A, as the scaling and performance
of cases with and without load balancing are similar,
and they are also comparable to the weak Landau
damping results shown in Figure 3(a) and 4(a), due
to the smaller total number of particles. We can see

Copyright © 2024
Copyright for this paper is retained by authors33

D
ow

nl
oa

de
d

11
/2

5/
24

 to
 1

34
.9

4.
2.

14
2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

from Figure 7(b) that the particle communication cost
is higher in the case without load balancing. This
leads to an earlier cross over point between computation
and communication, and therefore loss of scaling as
seen from Figure 7(a). This is because without load
balancing some ranks contain a lot more particles than
the others and also have to communicate more. The
particle communication has a synchronization step, and
since it has to wait for the last arriving rank, this leads
to an increase in the updateParticle cost. Moreover,
due to particle imbalance, the ranks which contain a lot
of particles take more time in the computation kernels
than the others, and this additional time also gets
reflected in the synchronization steps, which in our case
also correspond to updateParticle. We also note in
the right column of Figure 7 that the case without load
balancing is missing data points for 128 and 256 GPUs
as these runs fail due to lack of memory. As explained
before, this is due to the need for higher memory in
some GPUs which have to store a lot of particles. We
draw similar conclusions from the CPU simulations for
case B and hence they are not shown.

Thus we can see from this example that our particle
load balancing strategy is effective in cases with nonuni-
form particle distributions, without which the simula-
tions either fail due to insufficient memory, or have poor
scaling. We should, however, note that the load balanc-
ing strategy comes with a price. First, the additional
overhead has to be small relative to the costs of the
other kernels for it to be beneficial. This is the case
in our tests shown in Figure 7 as, apart from the ini-
tial load balancing, the routine is never invoked for the
set imbalance threshold of 1%. Second, our strategy
of particle load balancing creates a load imbalance in
the fields, as every rank now owns a brick of varied size
in contrast to the uniform field distribution in the case
without particle load balancing. This is visible from
Figures 6(b) and 6(c). Although this does not affect the
field solver scaling much in the case of strong Landau
damping, for problems with highly nonuniform particle
distributions, such as the Penning trap simulations, it
can have a significant impact, as will be explained in
Section 5.6.

The weak scaling results for the strong Landau
damping simulations with load balancing are very sim-
ilar to those of the weak Landau damping simulations
shown in Figure 5. We therefore do not show them, to
avoid repetition.

5.6 Electron dynamics in a charge neutral Pen-
ning trap In this section, we present the scaling re-
sults for the Penning trap mini-app. In Figure 8(a), the
initial electron density is shown, which is a Gaussian

(a) Initial density (b) GPUs=256 (c) GPUs=2048

Figure 8: Penning trap: Cross sectional view of the
initial particle density profile showing high (red) and
low (blue) densities, and particle load balanced domain
decompositions for 256 and 2048 GPUs.

bunch. In contrast to the Landau damping examples,
this highly nonuniform particle distribution leads to a
highly nonuniform field distribution after particle load
balancing, as shown in Figures 8(b) and 8(c). In that
respect the Penning trap mini-app is a harder test case
in terms of field and particle load balancing compared
to the Landau damping examples.

16 64 256

No. of GPUs

10!4

10!3

10!2

10!1

100

101

ti
m

e/
ti
m

e
st

ep
(s

)

128 512 2048

No. of GPUs

10!4

10!3

10!2

10!1

100

101

total gather particleBC pushPosition

scatter solve pushVelocity ideal

(a) Computation kernels for case A (left) and case B

(right)

16 64 256

No. of GPUs

10!3

10!2

10!1

100

ti
m

e/
ti
m

e
st

ep
(s

)

128 512 2048

No. of GPUs

10!3

10!2

10!1

100

accumulateHalo fillHalo

updateParticle loadBalance

(b) Communication kernels for case A (left) and case
B (right)

Figure 9: Penning trap. Strong scaling on GPUs:
scaling of computation kernels, communication kernels,
for cases A and B with load balancing.

In Figure 9, we show the strong scaling results for
cases A and B with load balancing on GPUs. For this

Copyright © 2024
Copyright for this paper is retained by authors34

D
ow

nl
oa

de
d

11
/2

5/
24

 to
 1

34
.9

4.
2.

14
2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

example, we are unable to run most of the simulations
without load balancing, due to memory requirements.
We observe from Figure 9(a) that the field solver takes
more time and that the scaling is much worse than for
the Landau damping cases (see Section 5.2.1 and 5.2.2
in [34]). This is more significant in case B due to the
large level of load imbalance in the fields, as shown in
Figures 8(b) and 8(c). We also observe that even with
particle load balancing, we are unable to run our sim-
ulation for case B with 128 GPUs due to insufficient
memory for particle communication operations during
time stepping. These observations clearly show that
for highly nonuniform particle distributions, as in this
Penning trap example, our current load balancing strat-
egy has to be improved in order to effectively carry
out these simulations with large numbers of particles
on large numbers of nodes. We will investigate this in
future work.

We notice from Figure 9(b) that even with particle
load balancing, we have significant variation in timings
across the GPUs for the updateParticle, which we did
not observe in the strong Landau damping simulations.
This again is a symptom of the highly nonuniform
electron distribution in the Penning trap simulations.

For strong scaling study on CPUs as well as weak
scaling studies on both GPUs and CPUs we refer the
readers to Section 5.4 in [34]. Since there is little
additional information to be inferred from these studies,
they are omitted here.

5.7 Performance bottlenecks and guidance for
the applications Based on the scaling and perfor-
mance analysis from the mini-apps we have identified
the following performance bottlenecks which could be
useful for the applications.

1. In the electrostatic PIC applications with O (10)
particles per cell the field solve is the most dom-
inant computational kernel on both GPUs and
CPUs and hence the overall time and the scala-
bility of the application is mostly determined by
the scalability and performance of the FFTs.

2. For highly nonuniform and clustered particle distri-
butions particle load balancing is key, especially on
GPUs, in order to carry out the simulations with-
out facing memory issues. However, particle load
balancing strategies such as orthogonal recursive
bisection lead to a load imbalance in the fields and
affects the scalability and performance. Thus novel
load balancing strategies which take into account
both memory and computational costs of the fields
and the particles are needed in order to carry out
these simulations efficiently.

6 Conclusion

In this work, we performed a scaling and performance
portability study of the electrostatic particle-in-cell
scheme for plasma physics applications by means of a
set of mini-apps, namely “Alpine”, targeting exascale
architectures. The mini-apps include weak and strong
Landau damping, the dynamics of an electron bunch in
a quasi-neutral Penning trap, and the two-stream and
bump-on-tail instabilities, which are commonly used as
benchmarks for electrostatic PIC studies. Our scaling
and performance analysis shows that the weak Landau
damping simulations perform the best among the mini-
apps in terms of scalability and time to solution. This
is because the particle distribution is relatively uniform
in this case, and the particle communication timings
therefore remain small compared to the timings of the
computation kernels. We obtained a maximum particle
push rate of approximately 1010 particles per second
on GPUs and 3 × 109 particles per second on CPUs in
the weak scaling study. The scaling and performance of
strong Landau damping simulations with particle load
balancing are very similar to those of the weak Landau
damping simulations, whereas without particle load
balancing the particle communication costs as well as
memory imbalance are much higher, which leads to poor
scaling. The Penning trap mini-app corresponds to the
toughest test case, due to the highly nonuniform particle
distribution. In this case, particle load balancing leads
to a significant imbalance in the fields, which then
affects the scaling of the field solve. Our current load
balancing strategy needs to be improved to handle such
cases.

A performance comparison across different GPU
and CPU architectures for the weak Landau damping
mini-app shows that Perlmutter with the latest NVIDIA
A100 GPUs performs the best in terms of wall time per
simulation time step, with almost an order of magni-
tude speedup compared to the Piz Daint P100 GPUs,
and approximately a three times speedup compared to
Summit with V100 GPUs. In the comparison of CPU
architectures, the wall time per simulation time step of
Piz Daint and Cori KNL nodes are very similar, with
Piz Daint showing better scaling than Cori.

In future work, we will optimize and improve upon
the current load balancing strategy and particle com-
munication. We will continue our benchmarking stud-
ies with Perlmutter and other upcoming architectures
to test for higher numbers of particles, grid points, and
GPUs and CPU cores. Finally, we would also like to
extend our current study by adding more mini-apps to
the Alpine collection, with test problems requiring the
inclusion of collisions and the implementation of an elec-
tromagnetic PIC scheme.

Copyright © 2024
Copyright for this paper is retained by authors35

D
ow

nl
oa

de
d

11
/2

5/
24

 to
 1

34
.9

4.
2.

14
2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Availability

Alpine and IPPL are open source projects. The sources
can be downloaded from https://github.com/IPPL-
framework/ippl.

Acknowledgments

The authors would like to thank the Kokkos team for
helping us with all the queries during the development of
IPPL and Alpine. We would like to thank Sonali Mayani
for many fruitful discussions during the course of this
project. We would also like to thank Marc Caubet
Serrabou from PSI for his help with all the installa-
tions during the development of IPPL. This project
has received funding from the European Union’s Hori-
zon 2020 research and innovation program under the
Marie Sk lodowska-Curie grant agreement No. 701647
and from the United States National Science Founda-
tion under Grant No. PHY-1820852. This research used
resources of the National Energy Research Scientific
Computing Center (NERSC), a U.S. Department of En-
ergy Office of Science User Facility located at Lawrence
Berkeley National Laboratory, operated under Contract
No. DE-AC02-05CH11231 using NERSC award ASCR-
ERCAPM888. We acknowledge access to Piz Daint at
the Swiss National Supercomputing Centre, Switzerland
under the PSI’s share with the project IDs psi07 and
psigpu. Finally, this research also used resources of the
Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy un-
der Contract No. DE-AC05-00OR22725.

Appendix A. Further setup details for the scaling
experiments

In terms of the time step, for the Landau damping
mini-app we choose it to be proportional to the mesh
size h as ∆t = 0.5hmin. We also make sure that it is
below the stable time step requirement of ∆t ≤ 2ω−1

pe ,
where ωpe is the electron plasma frequency. Since the
Penning trap simulations involve a lot more particle
communication than the Landau damping problem, we
choose the time step based on the finest mesh used in
our scaling studies, i.e. ∆t = 0.5(L/2048) ≈ 0.005,
just to have the same dynamics, and therefore similar
particle communication, for different grid resolutions in
a weak scaling study.

For the mini-apps we choose an over-allocation
factor (in IPPL) of 2.0 for the weak and strong Landau
damping tests, whereas for the Penning trap simulations
we choose a value of 1.0 due to its high memory
requirement per rank. These values are chosen based
on numerical experiments.

For the ease of performance analysis, in Table 4 we
split the significant kernels in our code into computation
kernels, from which we can expect parallel efficiency,
and communication kernels, which are required because
of domain decomposition. However, this separation is
not perfect since the FFTs required for the field solve
are computed using heFFTe and this includes communi-
cation in addition to the purely local operations. This
is because we use heFFTe as a black box for Fourier
transforms and hence do not use IPPL timers inside its
source code. The total time which is included in the
computation kernels column is the time taken for the
entire simulation to finish including the communication
kernels. However, we exclude the time spent writing
output data to files and an initial warm up call to the
field solve. The first call to the field solve takes signifi-
cantly more time than the subsequent ones owing to the
initializations performed by heFFTe. In the communi-
cation kernels, the “Fill halo cells” and “Accumulate
halo cells” operations are required during the gather
and scatter stages of the PIC cycle, and the “Parti-
cle update” sends the particles to the appropriate ranks
once they leave the local subdomain of the current rank.
The components not included in Table 4 account for
less than 10 percent of the total time in most of our
simulations. We therefore do not consider them in the
performance study.

We run the simulations for 20 time steps and report
the wall time per simulation time step for each of the
kernels in Table 4. As such, our performance figures
are not indicative of production runs, as one typically
needs to run for thousands of time steps in real plasma
simulations. Furthermore, depending on the long time
dynamics of the problem under consideration the per-
formance can be significantly different. Our objective
here is to assess the performance of different components
in the mini-apps across different architectures without
spending too many node hours or having to wait for
long periods in the job submission queues.

The versions of the compilers, MPI, Kokkos,
heFFTe, and IPPL used for the simulations on each
of the computing architectures considered in this work
are given in Appendix B. For the parameters in heFFTe
we chose pencil decomposition, pipelined point-to-point
communication with no-reordering. We refer the read-
ers to [22] for descriptions of these parameters. These
options are chosen based on our heFFTe benchmarking
experiments with all the possible parameter combina-
tions, selecting the best one in terms of scalability and
time to solution. In terms of domain decomposition for
our mini-apps, we use parallelization in all three direc-
tions for the fields, which gives each processor a brick
of field data along with one layer of halo cells.

Copyright © 2024
Copyright for this paper is retained by authors36

D
ow

nl
oa

de
d

11
/2

5/
24

 to
 1

34
.9

4.
2.

14
2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://github.com/IPPL-framework/ippl
https://github.com/IPPL-framework/ippl

Computation kernels Communication kernels
Gather (gather) Particle update (updateParticle)
Scatter (scatter) Fill halo cells (fillHalo)
Push position (pushPosition) Accumulate halo cells (accumulateHalo)
Push velocity (pushVelocity) Particle load balance (loadBalance)
Particle BCs (particleBC)
FFT-based field solve (solve)
Total time (total)

Table 4: List of computation and communication kernels used for the performance study. Inside the parentheses
are the labels which are used to represent the components in the figures.

Appendix B. Compilers and libraries used
for the benchmarks on different computing
architectures

We used Kokkos version 3.5.0 and heFFTe ver-
sion 2.2.0 for all our simulations. The version
of IPPL used for all the scaling studies is tagged
Scaling study for Alpine paper in the repository.
It can be obtained from https://github.com/IPPL-
framework/ippl.

For each of the architectures, the compiler type and
version and MPI version are specified in Table 5.

For the Piz Daint CPUs, we also conducted the
benchmarking study with the following Intel compiler.

• intel/2021.3.0

• cray-mpich/7.7.18

The results are very comparable to those obtained with
gcc. However, we sometimes observed an inconsistent
“Bus error”, the reason of which is still unknown and
under investigation.

References

[1] R. W. Hockney, J. W. Eastwood, Computer simulation
using particles, CRC Press, 1988.

[2] C. K. Birdsall, A. B. Langdon, Plasma physics via
computer simulation, CRC press, 2004.

[3] J. M. Dawson, Particle simulation of plasmas, Reviews
of modern physics 55 (2) (1983) 403.

[4] L. F. Ricketson, A. J. Cerfon, Sparse grid techniques
for particle-in-cell schemes, Plasma Physics and Con-
trolled Fusion 59 (2) (2016) 024002.

[5] A. Spitkovsky, Simulations of relativistic collisionless
shocks: shock structure and particle acceleration, in:
AIP Conference Proceedings, Vol. 801, American In-
stitute of Physics, 2005, pp. 345–350.

[6] O. Buneman, Computer space plasma physics, simula-
tion techniques and softwares, ed, H. Matsumoto and
Y. Omura (Terra Scientific, Tokyo, 1993) p 67.

[7] S. Jolliet, A. Bottino, P. Angelino, R. Hatzky, T.-M.
Tran, B. Mcmillan, O. Sauter, K. Appert, Y. Idomura,
L. Villard, A global collisionless PIC code in mag-
netic coordinates, Computer Physics Communications
177 (5) (2007) 409–425.

[8] C.-S. Chang, S. Ku, Spontaneous rotation sources in
a quiescent tokamak edge plasma, Physics of Plasmas
15 (6) (2008) 062510.

[9] R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk,
W. Lu, C. Ren, W. B. Mori, S. Deng, S. Lee, T. Kat-
souleas, et al., OSIRIS: A three-dimensional, fully rela-
tivistic particle in cell code for modeling plasma based
accelerators, in: International Conference on Compu-
tational Science, Springer, 2002, pp. 342–351.

[10] J. Qiang, S. Lidia, R. D. Ryne, C. Limborg-Deprey,
Three-dimensional quasistatic model for high bright-
ness beam dynamics simulation, Physical Review
Special Topics-Accelerators and Beams 9 (4) (2006)
044204.

[11] A. Adelmann, P. Calvo, M. Frey, A. Gsell, U. Locans,
C. Metzger-Kraus, N. Neveu, C. Rogers, S. Russell,
S. Sheehy, J. Snuvernik, D. Winklehner, OPAL a ver-
satile tool for charged particle accelerator simulations,
arXiv preprint arXiv:1905.06654.

[12] J.-L. Vay, A. Almgren, J. Bell, L. Ge, D. Grote,
M. Hogan, O. Kononenko, R. Lehe, A. Myers, C. Ng,
et al., Warp-X: A new exascale computing platform
for beam–plasma simulations, Nuclear Instruments and
Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment
909 (2018) 476–479.

[13] S. M. Mniszewski, J. Belak, J.-L. Fattebert, C. F.
Negre, S. R. Slattery, A. A. Adedoyin, R. F. Bird,
C. Chang, G. Chen, S. Ethier, et al., Enabling particle
applications for exascale computing platforms, The
International Journal of High Performance Computing
Applications 35 (6) (2021) 572–597.

[14] A. Myers, A. Almgren, L. Amorim, J. Bell, L. Fedeli,
L. Ge, K. Gott, D. P. Grote, M. Hogan, A. Huebl, et al.,
Porting WarpX to Gpu-accelerated platforms, Parallel
Computing 108 (2021) 102833.

[15] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M.
Willenbring, H. C. Edwards, A. Williams, M. Rajan,
E. R. Keiter, H. K. Thornquist, R. W. Numrich,

Copyright © 2024
Copyright for this paper is retained by authors37

D
ow

nl
oa

de
d

11
/2

5/
24

 to
 1

34
.9

4.
2.

14
2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://github.com/IPPL-framework/ippl
https://github.com/IPPL-framework/ippl

Architecture Compiler MPI
Piz Daint GPU gcc/9.3.0 OpenMPI/4.1.2 with CUDA/11.2

Piz Daint CPU gcc/11.2.0 cray-mpich/7.7.18

Cori KNL intel/19.1.1.217 cray-mpich/7.7.18

Summit GPU gcc/9.1.0 spectrum-mpi/10.4.0 with CUDA/11.0

Perlmutter GPU gcc/11.2.0 OpenMPI/4.1.2 with CUDA/11.4

Table 5: Compiler type, version and MPI used for each of the architectures used for the scaling study in Section
5.

Improving performance via mini-applications, Sandia
National Laboratories, Tech. Rep. SAND2009-5574 3.

[16] R. Bird, N. Tan, S. V. Luedtke, S. L. Harrell,
M. Taufer, B. Albright, VPIC 2.0: Next generation
particle-in-cell simulations, IEEE Transactions on Par-
allel and Distributed Systems 33 (4) (2021) 952–963.

[17] J. V. W. Reynders, J. Cummings, P. F. Dubois, The
POOMA Framework, Computers in Physics 12 (5)
(1998) 453–459.

[18] T. Veldhuizen, Expression templates, C++ Report
7 (5) (1995) 26–31.

[19] H. C. Edwards, C. R. Trott, D. Sunderland, Kokkos:
Enabling manycore performance portability through
polymorphic memory access patterns, Journal of Par-
allel and Distributed Computing 74 (12) (2014) 3202
– 3216, domain-Specific Languages and High-Level
Frameworks for High-Performance Computing.

[20] C. R. Trott, D. Lebrun-Grandie, D. Arndt, J. Ciesko,
V. Dang, N. Ellingwood, R. Gayatri, E. Harvey, D. S.
Hollman, D. Ibanez, et al., Kokkos 3: Programming
model extensions for the exascale era, IEEE Transac-
tions on Parallel and Distributed Systems 33 (4) (2021)
805–817.

[21] D. J. Quinlan, M. Berndt, MLB: Multilevel load bal-
ancing for structured grid applications, Tech. rep.,
Los Alamos National Lab.(LANL), Los Alamos, NM
(United States) (1997).

[22] A. Ayala, S. Tomov, A. Haidar, J. Dongarra, heFFTe:
Highly efficient FFT for exascale, in: International
Conference on Computational Science, Springer, 2020,
pp. 262–275.

[23] D. Rodŕıguez-Patiño, S. Ramı́rez, J. Salcedo-Gallo,
J. Hoyos, E. Restrepo-Parra, Implementation of the
two-dimensional electrostatic particle-in-cell method,
American Journal of Physics 88 (2) (2020) 159–167.

[24] L. Devroye, Nonuniform random variate generation,
Handbooks in operations research and management
science 13 (2006) 83–121.

[25] K. Tretiak, D. Ruprecht, An arbitrary order time-
stepping algorithm for tracking particles in inhomo-
geneous magnetic fields, Journal of Computational
Physics: X 4 (2019) 100036.

[26] A. Ho, I. A. M. Datta, U. Shumlak, Physics-based-
adaptive plasma model for high-fidelity numerical sim-
ulations, Frontiers in Physics 6 (2018) 105.

[27] A. Myers, P. Colella, B. V. Straalen, A 4th-order

particle-in-cell method with phase-space remapping
for the Vlasov–Poisson equation, SIAM Journal on
Scientific Computing 39 (3) (2017) B467–B485.

[28] K. Kormann, A semi-lagrangian vlasov solver in tensor
train format, SIAM Journal on Scientific Computing
37 (4) (2015) B613–B632.

[29] G. Chen, L. Chacón, D. C. Barnes, An energy-
and charge-conserving, implicit, electrostatic particle-
in-cell algorithm, Journal of Computational Physics
230 (18) (2011) 7018–7036.

[30] S. Sarkar, S. Paul, R. Denra, Bump-on-tail instability
in space plasmas, Physics of Plasmas 22 (10) (2015)
102109.

[31] S. Muralikrishnan, A. J. Cerfon, M. Frey, L. F. Rick-
etson, A. Adelmann, Sparse grid-based adaptive noise
reduction strategy for particle-in-cell schemes, Journal
of Computational Physics: X (2021) 100094.

[32] S. Adam, Space charge effects in cyclotrons-from sim-
ulations to insights, in: Proc. of the 14th Int. Conf.
on Cyclotrons and their Applications,(World Scientific,
Singapore, 1996), Vol. 446, 1995.

[33] J. Yang, A. Adelmann, M. Humbel, M. Seidel,
T. Zhang, et al., Beam dynamics in high intensity cy-
clotrons including neighboring bunch effects: Model,
implementation, and application, Physical Review Spe-
cial Topics-Accelerators and Beams 13 (6) (2010)
064201.

[34] S. Muralikrishnan, M. Frey, A. Vinciguerra, M. Lig-
otino, A. Cerfon, M. Stoyanov, R. Gayatri, A. Adel-
mann, Scaling and performance portability of the
particle-in-cell scheme for plasma physics applications
through mini-apps targeting exascale architectures,
arXiv:2205.11052, 2022.

[35] J. Xiao, J. Chen, J. Zheng, H. An, S. Huang, C. Yang,
F. Li, Z. Zhang, Y. Huang, W. Han, et al., Symplectic
structure-preserving particle-in-cell whole-volume sim-
ulation of tokamak plasmas to 111.3 trillion particles
and 25.7 billion grids, in: Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, 2021, pp. 1–13.

Copyright © 2024
Copyright for this paper is retained by authors38

D
ow

nl
oa

de
d

11
/2

5/
24

 to
 1

34
.9

4.
2.

14
2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

	Introduction
	IPPL
	Particle-in-cell method
	Vlasov-Poisson system
	Numerical implementation

	The Mini-Apps
	Landau damping
	Bump-on-tail/Two-stream instability
	Electron dynamics in a charge neutral Penning trap

	Scaling results
	Setup
	Performance comparison across different architectures
	Weak scaling
	Comparison to electromagnetic PIC
	Strong Landau damping
	Electron dynamics in a charge neutral Penning trap
	Performance bottlenecks and guidance for the applications

	Conclusion

