001032625 001__ 1032625
001032625 005__ 20250203133222.0
001032625 0247_ $$2doi$$a10.1016/j.matdes.2024.113453
001032625 0247_ $$2ISSN$$a0264-1275
001032625 0247_ $$2ISSN$$a0141-5530
001032625 0247_ $$2ISSN$$a0261-3069
001032625 0247_ $$2ISSN$$a1873-4197
001032625 0247_ $$2ISSN$$a1878-2876
001032625 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06391
001032625 0247_ $$2WOS$$aWOS:001361340800001
001032625 037__ $$aFZJ-2024-06391
001032625 082__ $$a690
001032625 1001_ $$0P:(DE-HGF)0$$aMorand, Lukas$$b0$$eCorresponding author
001032625 245__ $$aMachine learning for structure-guided materials and process design
001032625 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2024
001032625 3367_ $$2DRIVER$$aarticle
001032625 3367_ $$2DataCite$$aOutput Types/Journal article
001032625 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1732623697_28775
001032625 3367_ $$2BibTeX$$aARTICLE
001032625 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001032625 3367_ $$00$$2EndNote$$aJournal Article
001032625 520__ $$aIn recent years, there has been a growing interest in accelerated materials innovation in the context of the process-structure-property chain. In this regard, it is essential to take into account manufacturing processes and tailor materials design approaches to support downstream process design approaches. As a major step into this direction, we present a holistic and generic optimization approach that covers the entire process-structure-property chain in materials engineering. Our approach specifically employs machine learning to address two critical identification problems: a materials design problem, which involves identifying near-optimal material microstructures that exhibit desired properties, and a process design problem that is to find an optimal processing path to manufacture these microstructures. Both identification problems are typically ill-posed, which presents a significant challenge for solution approaches. However, the non-unique nature of these problems offers an important advantage for processing: By having several target microstructures that perform similarly well, processes can be efficiently guided towards manufacturing the best reachable microstructure. The functionality of the approach is demonstrated at manufacturing crystallographic textures with desired properties in a simulated metal forming process.
001032625 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001032625 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001032625 7001_ $$0P:(DE-Juel1)198952$$aIraki, Tarek$$b1$$ufzj
001032625 7001_ $$0P:(DE-HGF)0$$aDornheim, Johannes$$b2
001032625 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, Stefan$$b3$$ufzj
001032625 7001_ $$0P:(DE-HGF)0$$aLink, Norbert$$b4
001032625 7001_ $$0P:(DE-HGF)0$$aHelm, Dirk$$b5
001032625 773__ $$0PERI:(DE-600)2015480-X$$a10.1016/j.matdes.2024.113453$$gVol. 248, p. 113453 -$$p113453 -$$tMaterials and design$$v248$$x0264-1275$$y2024
001032625 8564_ $$uhttps://juser.fz-juelich.de/record/1032625/files/1-s2.0-S0264127524008281-main.pdf$$yOpenAccess
001032625 909CO $$ooai:juser.fz-juelich.de:1032625$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001032625 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)198952$$aForschungszentrum Jülich$$b1$$kFZJ
001032625 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b3$$kFZJ
001032625 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001032625 9141_ $$y2024
001032625 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001032625 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-22
001032625 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-22
001032625 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001032625 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-22
001032625 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-22
001032625 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER DESIGN : 2022$$d2025-01-02
001032625 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001032625 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001032625 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-26T11:03:51Z
001032625 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-26T11:03:51Z
001032625 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-01-26T11:03:51Z
001032625 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-02
001032625 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-02
001032625 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001032625 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-02
001032625 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001032625 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMATER DESIGN : 2022$$d2025-01-02
001032625 920__ $$lyes
001032625 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
001032625 980__ $$ajournal
001032625 980__ $$aVDB
001032625 980__ $$aUNRESTRICTED
001032625 980__ $$aI:(DE-Juel1)IAS-9-20201008
001032625 9801_ $$aFullTexts