001     1032625
005     20250203133222.0
024 7 _ |a 10.1016/j.matdes.2024.113453
|2 doi
024 7 _ |a 0264-1275
|2 ISSN
024 7 _ |a 0141-5530
|2 ISSN
024 7 _ |a 0261-3069
|2 ISSN
024 7 _ |a 1873-4197
|2 ISSN
024 7 _ |a 1878-2876
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-06391
|2 datacite_doi
024 7 _ |a WOS:001361340800001
|2 WOS
037 _ _ |a FZJ-2024-06391
082 _ _ |a 690
100 1 _ |a Morand, Lukas
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Machine learning for structure-guided materials and process design
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1732623697_28775
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In recent years, there has been a growing interest in accelerated materials innovation in the context of the process-structure-property chain. In this regard, it is essential to take into account manufacturing processes and tailor materials design approaches to support downstream process design approaches. As a major step into this direction, we present a holistic and generic optimization approach that covers the entire process-structure-property chain in materials engineering. Our approach specifically employs machine learning to address two critical identification problems: a materials design problem, which involves identifying near-optimal material microstructures that exhibit desired properties, and a process design problem that is to find an optimal processing path to manufacture these microstructures. Both identification problems are typically ill-posed, which presents a significant challenge for solution approaches. However, the non-unique nature of these problems offers an important advantage for processing: By having several target microstructures that perform similarly well, processes can be efficiently guided towards manufacturing the best reachable microstructure. The functionality of the approach is demonstrated at manufacturing crystallographic textures with desired properties in a simulated metal forming process.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Iraki, Tarek
|0 P:(DE-Juel1)198952
|b 1
|u fzj
700 1 _ |a Dornheim, Johannes
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sandfeld, Stefan
|0 P:(DE-Juel1)186075
|b 3
|u fzj
700 1 _ |a Link, Norbert
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Helm, Dirk
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1016/j.matdes.2024.113453
|g Vol. 248, p. 113453 -
|0 PERI:(DE-600)2015480-X
|p 113453 -
|t Materials and design
|v 248
|y 2024
|x 0264-1275
856 4 _ |u https://juser.fz-juelich.de/record/1032625/files/1-s2.0-S0264127524008281-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1032625
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)198952
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)186075
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-22
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MATER DESIGN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-26T11:03:51Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-26T11:03:51Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-01-26T11:03:51Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MATER DESIGN : 2022
|d 2025-01-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-9-20201008
|k IAS-9
|l Materials Data Science and Informatics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-9-20201008
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21