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In recent years, there has been a growing interest in accelerated materials innovation in the context of the 
process-structure-property chain. In this regard, it is essential to take into account manufacturing processes 
and tailor materials design approaches to support downstream process design approaches. As a major step into 
this direction, we present a holistic and generic optimization approach that covers the entire process-structure-

property chain in materials engineering. Our approach specifically employs machine learning to address two 
critical identification problems: a materials design problem, which involves identifying near-optimal material 
microstructures that exhibit desired properties, and a process design problem that is to find an optimal processing 
path to manufacture these microstructures. Both identification problems are typically ill-posed, which presents 
a significant challenge for solution approaches. However, the non-unique nature of these problems offers 
an important advantage for processing: By having several target microstructures that perform similarly well, 
processes can be efficiently guided towards manufacturing the best reachable microstructure. The functionality 
of the approach is demonstrated at manufacturing crystallographic textures with desired properties in a simulated 
metal forming process.
1. Introduction

1.1. Motivation

Accelerated materials innovation has become a core research field in 
integrated computational materials engineering (ICME) and is pushed 
forward strongly in materials science and engineering (cf. materials 
genome initiative [1], European advanced materials initiative [2]). Es-

sentially, the properties of such new sustainable, resilient, and high-

performance materials depend on the microstructure of the material, 
which, in turn, depends on the manufacturing process. Consequently, 
designing new materials without taking into account the manufacturing 
process does not add significant value [3]. For an application in indus-

try, groundbreaking technologies for modeling and optimization that 
cover the entire process-structure-property chain are required.

The process-structure-property chain, as depicted in Fig. 1, was origi-

nally introduced in [4] and describes fundamental relations in materials 
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processing. A basic characteristic of this chain is its modularity: Each in-

dividual link represents a specific identification problem, which includes 
identifying microstructures for given desired properties (materials de-

sign) and finding optimal processing paths for targeted microstructures 
(process design). These identification problems are typically not well-

posed in the sense of Hadamard [5], which presents a significant chal-

lenge for solution approaches [6]. However, the non-unique nature of 
these problems offers an important advantage for processing: It enables 
a more flexible production as processes can be efficiently guided to 
manufacture the best reachable microstructure from a set of equivalent 
microstructures with respect to their properties.

Leveraging this advantage presents certain challenges that require 
specialized yet generic materials and process design approaches. These 
approaches must be capable of identifying multiple solutions to their 
individual design problems and must work in conjunction with each 
other. In an effort to address this challenge, the present paper proposes 
a solution by combining two recently developed machine learning ap-
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Fig. 1. Process-structure-property chain following [4].

proaches, as described in [7] and [8]. The motivation behind using these 
approaches is elaborated in the following.

To handle the complexity and dimensionality of the identification 
problems, the use of machine learning has shown to be suitable for 
materials and process design applications [9,10]. In this work, a novel 
machine learning framework is introduced that combines the reinforce-

ment learning-based process design approach developed in [7]: multi-

equivalent goal structure-guided processing path optimization (MEG-

SGGPO), with the materials design approach developed in [8]: Siamese 
multi-task learning-based optimization (SMTLO). The framework is tai-

lored to the specifics of process-structure-property optimization prob-

lems and, therefore, constitutes a significant advancement towards ac-

celerated process and materials design.

Although each of the approaches has been shown to work well for 
their individual design problems, the combined usage of both is not in-

vestigated yet. This is particularly the aim of the present work, while 
the approaches are enhanced by using a recently developed novel dis-

tance measure for one-point statistics microstructure representations: 
the Sinkhorn distance 𝒟sh [12]. Specifically, the Sinkhorn distance is 
highly suitable as it takes into account neighborhood information en-

coded in histogram-based microstructure representations. In this work, 
we demonstrate the approach at manufacturing metallic materials with 
desired elastic and anisotropy properties, which are affected by the crys-

tallographic texture that evolves during forming.

1.2. Related work

Pioneering work has been done in the field of materials and process 
design, however, typically either focusing on solving materials design 
problems (without taking into account processing) or focusing on solv-

ing process design problems for given desired properties (not taking into 
account the microstructure of materials) [13–17]. In the following, we 
discuss works that describe approaches for solving materials and pro-

cess design problems with an emphasize on the application of machine 
learning.

A widely-used approach for designing materials is the microstructure 
sensitive design (MSD) approach [16]. This approach primarily focuses 
on identifying microstructures that exhibit desired properties, with six 
out of the seven MSD steps being dedicated to this task. The process-

ing of microstructures is only briefly addressed by the final MSD step. 
To the authors knowledge, there are only few works that show how 
to set up process-structure-property linkages for crystallographic tex-

ture optimization within the framework of MSD. One approach involves 
modeling crystallographic texture evolution as fluid flow in the orien-

tation space. On this basis, so-called processing streamlines are used to 
guide from one point to another [15,16].

For example, in the case of optimizing the crystallographic texture 
of an orthotropic plate, these streamlines were calculated for the pro-

cessing operations of tension and compression, and used to guide from 
a random crystallographic texture to required crystallographic textures 
[17]. These required crystallographic textures have been identified in 
beforehand based on the MSD approach [13]. Alternatively, so-called 
texture evolution networks have been developed within the context of 
2

MSD, using a priory sampled processing paths to create a directed tree 
Materials & Design 248 (2024) 113453

graph where microstructures are represented by the nodes on the graph 
[18]. Graph search algorithms are then used to find optimal processing 
paths from an initial to a targeted microstructure.

Besides the MSD approach, other approaches exist that solve crystal-

lographic texture optimization problems in terms of materials design, 
however, without solving a corresponding optimal processing problem. 
For instance, Kuroda and Ikawa [19] used a genetic algorithm to iden-

tify optimal combinations of typical fcc rolling (crystallographic) texture 
components for given desired properties. Also, Liu et al. [20] used op-

timization algorithms, but incorporated machine learning techniques to 
efficiently identify significant features and regions of the orientation 
space. Surrogate-based optimization has also been explored in several 
studies, such as for handling uncertainties in materials design [21]. Al-

ternatively, probabilistic modeling approaches can be used to directly 
to solve the inverse identification problem [22].

Regarding process design, machine learning-based and data mining-

based approaches have been proposed by several works, however, with-

out solving the corresponding materials design problem in beforehand. 
One approach involves the use of principle component analysis to rep-

resent one-step and two- to three-step deformation processes and to 
identify the deformation sequences required for reaching target crystal-

lographic textures [23,24]. Alternatively, a database approach can be 
used that stores microstructure representations and corresponding pro-

cessing paths [14]. The database can be searched for desired crystallo-

graphic textures yielding optimal process paths. These process paths can 
then be fine-tuned using gradient-based optimization. Another option is 
to store microstructure representations in a lower dimensional feature 
space generated by a variational autoencoder [25]. In this lower dimen-

sional feature space, optimal processing paths can be identified using 
a suitable distance measure. A more recent work for process design in 
terms of crystallographic texture, although optimizing process-property 
linkages, is described in [26]. Therein, neural networks are used to learn 
texture evolution in a deformation process, while an optimizer is used 
to drive the process to produce a material with desired properties. In 
this framework, however, crystallographic texture is varied only indi-

rectly and it cannot be guaranteed that an optimal texture is found in 
terms of material properties and reachability by the process.

Recent research directions in the field of materials and process de-

sign are the usage of probabilistic methods such as Bayesian approaches 
to tackle the ill-posedness of the inverse problem. In [27] a Bayesian 
methodology was used to estimate a posterior distribution of microstruc-

tures that are conditioned by a user-defined target property given a 
prior distribution. A similar approach was used in [28], in which op-

timal process parameters were estimated for manufacturing a material 
with given desired material properties (process-property linkage). In 
terms of process-structure optimization problems, in [29], a Bayesian 
active learning approach is proposed that is based on Gaussian pro-

cesses. While Bayesian methods generally suit well for solving such 
inverse problems, it can be hard to train these when the amount of data 
increases. Therefore, active learning approaches were developed that 
do not use Gaussian processes but instead make use of a committee-

based active learning approach [30]. Other novel approaches in ma-

terials engineering make use of knowledge graphs for microstructure 
representation and the application of graph neural networks for prop-

erty prediction, as demonstrated in [31]. Such approaches are rather 
descriptor-based approaches, such as the ones presented in [32] and 
[33] for meta materials design.

Other recent approaches for designing materials make use of gener-

ative models, such as in [11]. Therein, a generative adversarial network 
(GAN) is modified to generate microstructures based on continuous vari-

ables, which is an important prerequisite for designing materials. In 
[34], a further developed continuous conditioned GAN for diverse out-

puts was introduced and applied to a synthetic and real-world airfoil 
design task. Alternatively, in [35] a diffusion-based machine learning 
model is used for microstructure reconstruction with respect to given 

material properties. An alternative, descriptor-based approach for mi-
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crostructure reconstruction can be found in [36]. Furthermore, since 
the work by [25], variational auto-encoder-based approaches gain pop-

ularity, such as in [37] for the design of quantum-mechanical proper-

ties in small organic molecules. Recent developments in the design of 
molecules investigate the potential of using large language models, such 
as in [38].

In the future, it is envisioned that design approaches will be im-

plemented as applications on data platforms, as described in [39]. Such 
platforms, like the one described in [40], enable the storage of heteroge-

neous material data in a FAIR manner, ensuring that the data is findable, 
accessible, interoperable, and reusable [41]. This, in turn, allows for 
(automated) data processing using applications, such as based on sim-

ulation or machine learning. The utilization of these platforms opens 
up the possibility of employing design approaches for experimentation, 
which has the potential to lead to autonomous materials discovery and 
manufacturing [42].

1.3. Structure of this work

In the following Section 2, we introduce the structure-guided mate-

rials and process design approach as well as the metal forming process 
simulation at which the functionality of the approach is demonstrated 
and the used representation of crystallographic texture. Afterwards, in 
Section 3, the results for optimizing the crystallographic texture in the 
metal forming process for given desired properties are shown. The re-

sults are discussed in Section 4 and an outlook is given in Section 5.

2. Methods

The methods section is split into two parts: First, we present the 
basics for the structure-guided materials and process design approach 
studied in this paper, and, second, we present the domain specific ap-

plication case at which we evaluate the presented approach.

2.1. Structure-guided materials and process design

2.1.1. General concept

The approach presented in this paper combines two machine 
learning approaches for materials design, namely Siamese multi-task 
learning-based optimization (SMTLO), and for process design, namely 
multi-equivalent goal structure guided processing path optimization 
(MEG-SGGPO), see Fig. 2. The approach starts in the properties space, 
where a target region of desired properties is defined. Then, the SMTLO 
approach is applied to identify a set of diverse microstructures that yield 
material properties inside the target region (Step 1). When having iden-

tified this set, MEG-SGGPO identifies the process path that leads to the 
best reachable microstructure (Step 2). The microstructure space is link-

ing process and properties, and, therefore, is of overall importance for 
our approach. A suitable distance measure is one of the core ingredients 
for the approach to work. The proposed approach is generic in nature, 
making it applicable to any kind of process-structure-property relations. 
Furthermore, it is not limited to particular input/output data formats, 
and can even be applied to image data.

2.1.2. Siamese multi-task learning-based optimization (SMTLO)

The SMTLO approach described in [8] consists of a Siamese neural 
networks-based multi-task learning model and an optimizer. The latter 
uses the predictions of the learned neural network model to generate 
candidate microstructures that are supposed to (i) yield properties in-

side a defined target region and (ii) are reachable by the underlying 
manufacturing process, see Fig. 3. The details of the SMTLO approach is 
described in the following. Alternative approaches, that focus only the 
mapping of microstructures to properties can be found, for example in 
[43].

The multi-task learning model is grounded on an encoder 𝑓enc that 
transforms a microstructure representation 𝒙 into a lower dimensional 
3

latent feature space representation 𝒛
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𝒛 = 𝑓enc(𝒙,𝜽enc), (1)

with the trainable parameters 𝜽enc. The encoder is equipped with three 
heads, each of which is designed to solve a specific learning task. These 
are

1. a decoder head that reconstructs the microstructure representations 
𝒙 from 𝒛

𝒙′ = 𝑓dec(𝒛,𝜽dec), (2)

with the trainable parameters 𝜽dec. The encoder-decoder part is 
trained using a loss term that minimizes the Sinkhorn distance be-

tween the original microstructure 𝒙 and its reconstruction 𝒙′ [12]

ℒrecon =𝒟sh(𝒙,𝒙′). (3)

2. a prediction head 𝑓regr to infer material properties �̂�

�̂� = 𝑓regr (𝒛,𝜽regr ), (4)

with the trainable parameters 𝜽regr . The sample-wise loss term is 
defined by the mean squared error between predicted properties �̂�
and true properties 𝒑:

ℒregr =
1
𝑛p

𝑛p∑
𝑖

(𝑝𝑖 − �̂�𝑖)2, (5)

with the number of properties 𝑛p.

3. an auto-encoder head that serves as an anomaly detector to estimate 
whether a microstructure in its latent representation belongs to the 
set of known microstructures (defined by the training data) or not:

𝒛′ = 𝑓valid(𝒛,𝜽valid), (6)

with the trainable parameters 𝜽valid. For this auto-encoder, a mean 
squared error loss function is used:

ℒvalid =
1
𝑛z

𝑛z∑
𝑖

(𝑧𝑖 − 𝑧′𝑖)
2, (7)

with 𝑛z dimensions of the latent feature space.

The neural networks-based multi-task learning model that is used to 
solve the above mentioned learning tasks is trained using a combined 
loss function

ℒMTL =𝒲reconℒrecon +𝒲regrℒregr +𝒲validℒvalid, (8)

with individually weighted loss terms using the parameters 𝒲recon , 𝒲regr
and 𝒲valid.

The objective of the materials design step is to enable the optimizer 
to identify a diverse set of microstructures for given desired material 
properties, each microstructure being reachable by the underlying man-

ufacturing process. In order to quantify diversity, a distance measure 
is required in the latent feature space. To ensure that the original mi-

crostructure distance is preserved in the lower dimensional latent fea-

ture space, the multi-task learning model is embedded in a Siamese 
neural network model [44]. This involves training two twin models si-
multaneously, with shared weights in the encoder, and adding a further 
loss term that applies to the latent feature space. Note that the two twin 
models are trained using different input and output vectors, denoted 
with the subscripts 𝐿 and 𝑅 in the following. The preservation loss leads 
to multidimensional scaling (see [45] and [46]) and writes

ℒpres = (𝒟sh(𝒙𝐿,𝒙𝑅) − dist(𝒛𝐿,𝒛𝑅))2, (9)

with the absolute distance in the latent feature space

1
𝑛z∑
dist(𝒛𝐿,𝒛𝑅) = 𝑛z 𝑖

|𝑧𝐿,𝑖 − 𝑧𝑅,𝑖|. (10)
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Fig. 2. General concept for structure-guided materials and process design. The first step (materials design) is addressed by the SMTLO approach, while the second 
step (process design) is addressed by the MEG-SGGPO approach.

Fig. 3. The neural networks-based Siamese multi-task learning model (left) and the optimization part (right). Together, both parts build the SMTLO approach to 
solve materials design problems.
The overall loss function writes

ℒ =𝒲reconℒrecon +𝒲regrℒregr

+𝒲validℒvalid +𝒲presℒpres + 𝜆Ω(𝜽), (11)

with the regularization term Ω(𝜽), and the weight 𝒲pres for the preser-

vation loss.

After training the Siamese multi-task learning model, we use a ge-

netic optimizer [47] to search for candidate microstructures in the ob-

tained latent feature space. The optimizer minimizes three cost terms: 
𝒞prop, 𝒞valid, 𝒞divers, which are explaining in detail in [8]. Briefly de-

scribed, 𝒞prop describes the distance between the predicted properties �̂�
for a candidate microstructure 𝒛∗ to the target region. 𝒞valid aims to pe-
4

nalize candidate microstructures that are not inside the region of known 
microstructures. 𝒞divers aims to enforce candidate microstructures to be 
as far away as possible from each other in the actual population (in other 
words as diverse as possible). The overall objective function writes

𝒞 =𝒱prop𝒞prop +𝒱valid𝒞valid +𝒱divers(1 +𝒞divers), (12)

with individual weights 𝒱prop, 𝒱valid, and 𝒱divers. The property cost term 
directs the candidate microstructures to align with the desired target 
properties. The validity cost ensures that the optimizer stays within the 
region of valid microstructures, while the diversity cost guarantees suffi-

cient variation among the candidate microstructures. By optimizing the 
objective function in Equation (12), only those candidate microstruc-

tures that meet the necessary criteria are selected for the process design 

step.
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2.1.3. Multi-equivalent goal structure-guided processing path optimization 
(MEG-SGGPO)

In reinforcement learning, an agent learns to take optimal decisions 
by interacting with its environment in a sequence of discrete time steps 
𝑡. The MEG-SGGPO approach [7] is tailored for efficient learning in 
the case of multiple equivalent target microstructures. Given a set 
of near-optimal microstructures �̌�𝑖 ∈ , an initial microstructure 𝑔0 , and 
a microstructure generating process 𝑝(𝑔𝑡, 𝑎𝑡) = 𝑔𝑡+1, the go of the ap-

proach is to find a sequence of processing parameters 𝑎𝑡 ∈𝐴 that guide 
the process towards manufacturing the best reachable microstructure 
𝑔∗ ∈ .

MEG-SGGPO is based on deep Q-networks [48] and its extensions 
[49–51]. Deep Q-networks are derived from Q-learning, where the so-

called Q-function is approximated from data gathered by the reinforce-

ment learning agent while following a policy 𝑎 = 𝜋(𝑔). The Q-function 
models the expected sum of future reward signals for state action pairs 
(𝑔𝑡, 𝑎𝑡). In MEG-SGGPO the Q-function is generalized to also take the 
goal microstructure into account and is, in its recursive form, defined as

(𝑔𝑡, 𝑎𝑡, �̌�𝑖) = 𝔼𝑃 ,𝜋

[
𝑅(𝑔𝑡, 𝑔𝑡+1, �̌�𝑖) + max

𝑎𝑡+1∈𝐴
(𝑔𝑡+1, 𝑎𝑡+1, �̌�𝑖)

]
, (13)

where 𝑅(𝑔𝑡, 𝑔𝑡+1, �̌�𝑖) is a per goal microstructure pseudo reward function

𝑅(𝑔𝑡, 𝑔𝑡+1, �̌�𝑖) =
1

𝒟(𝑔𝑡+1, �̌�𝑖)
− 1

𝒟(𝑔𝑡, �̌�𝑖)
, (14)

which is based on a microstructure distance function 𝒟.

The process design task is a two-fold optimization problem to (i) 
identify the best reachable goal microstructure �̌�𝑖∗ and (ii) learn the op-

timal policy 𝜋∗. MEG-SGGPO addresses this by using the generalized 
functions defined above in a nested reinforcement learning procedure. 
At the beginning of each episode (i.e. an execution of the process dur-

ing learning), the agent uses the generalized Q-function to identify the 
targeted microstructure �̌�𝑖′ from  and determines the processing pa-

rameters during the episode. In a first step, an estimation of the best 
reachable goal microstructure �̌�𝑖∗ is extracted from the current  esti-

mation by

�̌�𝑖∗ = argmax
�̌�𝑖∈

[
(𝑔0, �̌�𝑖) +

1
𝒟(𝑔0, �̌�𝑖)

]
, (15)

where the generalized state-value function  is defined as

(𝑔, �̌�𝑖) = max
𝑎∈𝐴

(𝑔, 𝑎, �̌�𝑖). (16)

The targeted microstructure is chosen in an 𝜖-greedy approach [52], 
where the agent chooses random targets and processing parameters in 
an 𝜖 fraction of the cases (0 ≤ 𝜖 ≤ 1) and optimizes targets and process-

ing parameters in the remaining cases. The optimal processing path is 
identified simultaneously in an inner loop by using the Q-learning ap-

proach.

2.2. Application case

2.2.1. Crystallographic texture optimization

To study it’s functionality, the structure-guided materials and pro-

cess design approach is applied to a crystallographic texture optimiza-

tion problem in a metal forming process. The process-structure-property 
chain adapts to cold forming operations that change the crystallographic 
texture of a material, which significantly affects elastic and plastic prop-

erties. The underlying metal forming process simulation is described in 
the following section, as well as the determination of the properties that 
we are going to target.

We have chosen crystallographic texture optimization as the focal 
point of this paper for the following reasons: Crystallographic texture 
of polycrystals and their corresponding properties is one of the core 
topics of materials engineering. In particular, understanding how mi-

crostructural features affect the elastic and anisotropic properties of 
5

metals plays an important role in manufacturing processes such as sheet 
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metal forming. At the same time, crystallographic texture is a complex 
and high-dimensional microstructural feature, rendering the materials 
and process design problems inherently challenging. Therefore, it serves 
as an ideal benchmark problem to demonstrate the effectiveness of our 
proposed approach.

2.2.2. Metal forming process simulation

In this study, we use the metal forming process simulation as is de-

scribed in [7]. The simulation applies a deformation �̂�

�̂� =𝑹𝑭𝑹⊤, (17)

with 𝑹 being a rotation matrix that describes one out of 25 possible 
loading directions. The deformation 𝑭 is defined using orthogonal basis 
vectors 𝒆𝑖 and the operator ⊗ for the dyadic product

𝑭 = 𝐹11𝒆1 ⊗ 𝒆1 + 𝐹22𝒆2 ⊗ 𝒆2 + 𝐹33𝒆3 ⊗ 𝒆3 (18)

with 𝐹11 corresponding to 10% strain increments. 𝐹22, 𝐹33 are adjusted 
such that the stresses are in balance. The metal forming process consists 
of seven subsequent loading steps, each in a separate loading direction. 
For this study, we conducted 76980 random process paths to generate 
the training data for the SMTLO approach.

The underlying material model is a crystal plasticity model of Taylor-

type [53]. The volume averaged stress for 𝑛oris crystals with different 
orientations is calculated by

𝑻 = 1
𝑉

𝑛oris∑
𝑖

𝑻 (𝑖)𝑉 (𝑖), (19)

with the total volume 𝑉 , the individual volume of each crystal 𝑉 (𝑖), and 
the Cauchy stress tensor 𝑻 (𝑖).

With the multiplicative decomposition of the deformation gradient 
in its elastic and plastic part

𝑭 = 𝑭 e ⋅ 𝑭 p, (20)

and the conversion formula for the stress tensor in the intermediate con-

figuration 𝑻 ∗

𝑻 ∗ = 𝑭 −1
e ⋅ (det(𝑭 e)𝑻 ) ⋅ 𝑭 −⊤

e , (21)

the Cauchy stress tensor is derived using

𝑻 ∗ = 1
2
ℂ ∶ (𝑭 ⊤

e ⋅ 𝑭 e − 𝑰), (22)

where 𝑰 denotes the second order identity tensor and ℂ the fourth order 
elastic stiffness tensor.

The evolution of the plastic deformation is described using the plastic 
part of the velocity gradient

𝑳p = ̇𝑭 p ⋅ 𝑭
−1
p =

∑
𝛼

�̇� (𝛼)𝒎(𝛼) ⊗ 𝒏(𝛼), (23)

with the slip rates �̇� (𝛼) on slip system 𝛼 that is defined by the slip plane 
normal 𝒏(𝛼) and the slip direction 𝒎(𝛼). The slip rates are calculated by a 
phenomenological power law. The crystal reorientation is calculated by 
applying a rigid body rotation derived from the polar decomposition of 
𝑭 e to the original orientation, see [54,12]. For the metal forming process 
simulation, the same material model parameters have been used as in 
[7].

For the purpose of this study, we use the above described material 
model to evaluate the Young’s modulus 𝐸 and an anisotropic property 
𝑅 in three orthogonal directions after a process run. The Young’s mod-

ulus is calculated using the slope of the stress-strain curve in the elastic 
regime, that results after applying uniaxial tension. 𝑅 is inspired by the 
Lankford coefficients in sheet metal forming and is calculated as the ra-

tio between transverse strain and the strain in loading direction in the 

plastic regime, also after applying uniaxial loading.
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Fig. 4. Projections of the property space showing the data distribution and the target region. The distribution of the underlying point cloud is displayed in blue, 
while the gray dots mark data points that are already located inside the target region. The black isolines indicate regions with the same point cloud density.
2.2.3. Crystallographic texture representation and texture distance measure

Crystallographic texture is represented by using the histogram-based 
description introduced by Dornheim et al. [7]. The orientation his-

togram (here, we used a soft-assignment factor of 3) consists of 512 
orientation bins that are nearly uniformly distributed in the cubic-

triclinic fundamental zone. The bin orientations were created using the 
software neper [55,56]. In contrast to the original MEG-SGGPO and 
SMTLO approach, in this work, crystallographic texture distances are 
measured using the Sinkhorn distance that is applied to the histogramm 
representations [12]. Specifically, the Sinkhorn distance is an efficient 
implementation of the Earth Movers distance that measures the least 
amount of work necessary to transform one histogram into the other 
[57,58]. Therefore, local orientation distances [59] encoded in the his-

tograms are taken into account, in contrast to the originally proposed 
Chi-Squared distance, which is basically a bin-wise comparison of two 
histograms.

3. Results

3.1. Solving the materials and process design tasks

The following demonstrates how the proposed approach can be im-

plemented to solve a coupled materials and process design problem, 
specifically in relation to processing crystallographic textures with de-

sired properties. First, it is shown how near-optimal crystallographic 
textures are identified for given elastic and anisotropy properties us-

ing SMTLO. The properties are in particular the Young’s moduli 𝐸𝑖

and anisotropy measures 𝑅𝑖, both in three orthogonal directions. Once 
near-optimal crystallographic textures are identified, in a second step, 
MEG-SGGPO is used to guide the underlying manufacturing process to 
produce the best reachable crystallographic texture out of the set of iden-

tified near-optimal textures.

The basis for applying the SMTLO approach is a data set of 76980 
samples, composed of crystallographic textures and corresponding prop-

erties. 2D projections of the training data distribution, generated by the 
metal forming process simulation, are shown in Fig. 4 including the re-

gion delineating the desired properties (target region). In this study, 
the target region is centered at 𝐸11, 𝐸22, 𝐸33 = 214, 214, 221 GPa and 
𝑅23, 𝑅12, 𝑅13 = 0.65, 0.685, 0.885. Its width equals 2 GPa for 𝐸𝑖 and 0.2
for 𝑅𝑖. Both 𝐸𝑖 and 𝑅𝑖 are determined in three orthogonal directions at 
6

the material point at the end of the process. 𝐸𝑖 is given by the slope in 
the elastic regime, while 𝑅𝑖 is calculated by the ratio between transverse 
and tensile strain in the plastic regime when applying uniaxial tension. 
In Fig. 4, we highlighted training data points that are already located 
inside the target region. We use this set of 80 crystallographic textures 
as benchmark set.

3.2. Materials design using SMTLO

The Siamese multi-task learning model is realized via feedforward 
neural networks with 𝑡𝑎𝑛ℎ activation functions and are implemented 
based on the Pytorch API [60]. For hyperparameter optimization the 
random search method [61] is utilized using 5-fold cross-validation. 
The training data set comprises 80% of the total data, while the test 
data set accounts for the remaining 20%. The following hyperparam-

eters have been chosen: The Glorot Normal method [62] is used for 
weight initialization and the Adam optimizer [63] is used with the fol-

lowing parameters: learning rate = 0.001, weight decay = 10−6, batch 
size = 128.

The Siamese multi-task learning model is trained for 100 epochs, 
where the best intermediate result of the test set is retained to prevent 
over fitting and to apply early stopping [64]. Before the model is trained, 
the loss terms are scaled to values between 0 and 1 in order to make them 
comparable. The following weights for the scaled loss terms in Eq. (11)

were based on hyper parameter optimization: 𝒲recon = 0.2, 𝒲regr = 0.06, 
and 𝒲valid = 0.04, and 𝒲pres = 0.70. The loss curves resulting from the 
model training are collected for both, the test and the training dataset, 
for each individual epoch and are shown for each task separately in 
Fig. 5. It can be seen that for the validity, reconstruction, and regression 
tasks, the loss is minimized up to epoch 50 with no signs of overfitting. 
For the distance preservation task, the loss continues to decrease beyond 
epoch 50, also without any overfitting observed. For the cost function of 
the optimizer (defined in Eq. (12)) that we need after having a trained 
Siamese multi-task learning model, we use the weights 𝒱prop = 0.75, 
𝒱valid = 0.05, and 𝒱divers = 0.2.

The results for the properties prediction are given by the mean ab-

solute error (MAE) between the true and predicted Young’s moduli and 
𝑅-values: MAEE = 0.368 [GPa] and MAER̃ = 0.032 [-]. The result of 
the distance preservation is measured by the coefficient of determina-

tion 𝑅2, between the Sinkhorn distance of two input crystallographic 
textures and the 𝑙1 distance of their corresponding latent feature vec-
tors: 𝑅2(𝒟sh(𝒙𝐿, 𝒙𝑅), 𝑙1(𝒛𝐿, 𝒛𝑅)) = 90.22[%].
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Fig. 5. Loss curves of the Siamese multi-task learning model for the test dataset (blue) and the training dataset (red) across tasks: (a) validity, (b) reconstruction, 
(c) regression, and (d) distance preservation, plotted on a logarithmic scale.

Fig. 6. Density of pairwise distances between crystallographic textures belonging to the set of identified crystallographic textures (red) and between crystallographic 
textures belonging to the benchmark set (green), evaluated in the latent space of the Siamese multi-task learning model.
Using the SMTLO approach (with the trained multi-task learning 
model as described above), we were able to identify a set of 175 near-

optimal crystallographic textures. As we aim to identify a preferably 
diverse set of crystallographic textures, we depict their pairwise dis-

tances in Fig. 6 and compare them to the benchmark set. As one can 
easily see, the SMTLO approach is able to find a set of crystallographic 
textures that differ more to each other than the benchmark set.

For the subsequent process design step, we chose ten goal textures 
from the set of identified crystallographic textures that differ strongly 
from each other [65]. The distribution of the chosen goal textures in 
properties space is shown in Fig. 7. The properties of the goal textures 
are mainly located inside the target region, with some exceptions that 
we tolerate for now and explain later in Section 4. To show the differ-

ences between the goal textures, in Fig. 8, four crystallographic textures 
are depicted exemplary as pole figure plots. While the pole figure in-

tensities are similar for all crystallographic textures, the shape of the 
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represented orientation distribution differs strongly.
The artificial neural networks and the reinforcement learning ap-

proach were trained a workstation equipped with 20 2.2 GHz CPU cores 
and a GeForce RTX 3090 GPU with 24GB RAM by using the Linux 
Ubuntu operating system.

3.3. Process design using MEG-SGGPO

Experiments are conducted with the following hyperparameters: 
Deep Q-learning as described in Section 2.1.3 as basic algorithm where 
the target-network is updated every 𝑛𝜃 = 50 time-steps. Q-networks with 
hidden layer sizes of [128, 256, 256, 128], layer normalization and ReLU 
activation functions. The learning process starts after 100 control-steps. 
The networks are trained after each control-step with a mini-batch of 
size 32. The Adam optimizer [63] is used for neural network training, 
with a learning rate of 5 × 10−4. An 𝜖-greedy policy is applied, with an 
initial exploration rate 𝜖0 = 0.5 and the final exploration-rate 𝜖𝑓 = 0.0, 

with 𝑛𝜖 = 390.
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Fig. 7. Projections of the properties space showing the target region and the calculated properties of the ten chosen goal textures �̌�0 to �̌�9.
Fig. 8. Four exemplary crystallographic textures of the ten chosen goal textures 
depicted as pole figure plots: (001), (110), (111).

Once a diverse set of crystallographic textures has been identified, 
MEG-SGGPO is used to guide the metal forming process to the best 
reachable crystallographic texture. For solving the identification prob-
8

lem, the MEG-SGGPO approach is allowed to conduct 400 process runs, 
Table 1

Properties of the produced crystallographic texture and the 
distance to the target region.

Target property Value Distance to target region Unit

𝐸11 217.5 2.5 GPa

𝐸22 216.6 1.6 GPa

𝐸33 222.2 0.3 GPa

𝑅23 0.744 0 -

𝑅12 0.831 0.046 -

𝑅13 1.058 0.073 -

so-called episodes. The evolution of the distance between the produced 
and the chosen goal texture is depicted over the episodes in Fig. 9. Ini-

tially, the reinforcement learning agent attempts to identify processing 
paths that target randomly selected goal textures. As the learning pro-

cess progresses, the agent focuses increasingly on producing goal texture 
�̌�2.

For comparison, Fig. 10 presents pole figure plots of the goal texture 
�̌�2 and the produced crystallographic texture �̌�2′ after 400 episodes. 
Visually, the produced crystallographic texture is highly similar to the 
goal texture with intensity peaks at the same positions and of a similar 
magnitude. This also holds for areas not covered by orientations at all. 
To quantify the effectiveness of the approach, we compute the properties 
resulting from the produced crystallographic texture and compare them 
with the desired ones. The results, listed in Table 1, show that five of 
the properties (𝐸11, 𝐸22, 𝐸33, 𝑅12 and 𝑅13) are very close to the target 
region, while 𝑅23 lies inside.

In summary, by sequentially applying the SMTLO and the MEG-
SGGPO approach, we were able to successfully produce a crystallo-
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Fig. 9. Sinkhorn texture distance 𝒟sh between the produced and the goal texture 
over the episodes of the MEG-SGGPO approach. The color indicates the targeted 
crystallographic texture.

Fig. 10. Pole figure plots (001), (110), (111) of the targeted goal texture �̌�2
(top) and the produced crystallographic texture �̌�2′ (bottom).

graphic texture with desired properties in a simulated metal forming 
process. The resulting properties fall within the acceptable range from 
an engineering point of view, albeit at the border of the target region 
defined in property space.

4. Discussion

The results presented demonstrate the effectiveness of the SMTLO 
approach in identifying sets of near-optimal crystallographic textures 
that exhibit desired properties in a given target region. The set of crys-

tallographic textures identified by the approach is shown to be more 
diverse than the benchmark set obtained from the training data set. 
However, the properties of the identified crystallographic textures are 
not completely inside the target region, as can be seen in Fig. 7.

There are two reasons for this: First, the formulation of the opti-

mization objective in the SMTLO approach allows for a trade-off be-

tween (i) finding crystallographic textures with properties inside the 
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target region, (ii) identifying possibly diverse crystallographic textures 
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and, (iii) guaranteeing that crystallographic textures can be produced 
by the process under consideration. Second, due to prediction errors of 
the underlying machine learning model, the SMTLO approach identifies 
crystallographic textures whose predicted properties lie inside the target 
region, while some of the true properties (calculated by the numerical 
simulation on the basis of the reconstructed crystallographic textures) 
slightly lie outside. Both of these issues can be addressed by modify-

ing the objective function of the SMTLO optimizer, defined by Equation 
(12). For instance, targeting the center of the properties region, instead 
of its bounds can mitigate both issues. Additionally, the second issue can 
be addressed by enhancing the machine learning model, for example, by 
increasing the amount of training data.

Taking a diverse subset of the identified crystallographic textures 
as goal textures, the MEG-SGGPO approach guides the metal forming 
process closely to one of the chosen goal textures. Although the rein-

forcement learning agent was not able to reproduce one of the goal 
textures exactly (which is challenging due to the many possible process-

ing paths), the measured distance between the targeted crystallographic 
texture �̌�2 and the produced one �̌�2′ is sufficiently low (𝒟sh = 0.031) 
when relating it to the distance to the nearest neighbor in the training 
data set (𝒟sh = 0.033) and to the furthest data point (𝒟sh = 0.141). This 
can be seen in Fig. 9, which depicts the reduction in Sinkhorn distance 
from the initial texture 𝑔0 to the final produced texture �̌�2′ guided by 
the reinforcement learning agent.

We want to remark here, that it is generally difficult to evaluate dis-

tances between crystallographic textures, even for experts. Therefore, 
the quality of the produced crystallographic texture is determined by 
two considerations: (i) the distance of the textures in the microstructure 
space (as illustrated above), which is statistically valid, and (ii) the dis-

tance in properties, which can be assessed based on the results shown 
in Table 1. It can be seen that for the produced texture, one property 
lies within the target region, while the remaining five properties are in 
close proximity. It is remarkable that it took the reinforcement learning 
agent only 400 episodes to achieve this result compared to the baseline 
set that is grounded on the generation of 76980 random samples. The 
reinforcement learning algorithm can therefore be seen as being data 
efficient.

Nevertheless, in this study, it seems that a lower bound is existing 
that is difficult to overcome by the MEG-SGGPO approach. In general, 
this can have two reasons: First, the forming process is unable to produce 
crystallographic textures that are closer to the goal texture identified by 
the SMTLO approach. Yet, the SMTLO approach already addresses this 
issue by enforcing microstructures to remain within the region delin-

eated by the known microstructures from the training data set via the 
term 𝒱valid𝒞valid in Equation (12). We expected that a stronger enforce-

ment leads to crystallographic textures that are better reachable by the 
process. This, however, can lead to a lower accuracy in terms of ob-

taining the desired material properties, due to the change in the other 
weights in the objective function of the SMTLO optimizer. Second, the 
MEG-SGGPO approach identified a local optimum and got stuck. This 
can be mitigated by longer MEG-SGGPO runs with optimized hyper-

parameters. Longer runs, however, have not shown to yield significant 
improvements in the presented study. As future work, it is desirable to 
incorporate the knowledge contained in the generated training samples 
for SMTLO into MEG-SGGPO a priori to enhance its performance.

5. Conclusion

In summary, the machine learning-based approach presented in this 
study enables accelerated materials development by taking into account 
the manufacturing process. This was particularly challenging as for the 
considered metal forming process a total of 257 different processing 
paths would be possible; we found that

• 76980 samples were sufficient for the SMTLO approach to success-
fully solve the materials design problem. It allowed us to identify 
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a diverse set of near-optimal crystallographic textures with de-

sired properties. The crystallographic textures are considered near-

optimal in the sense that all of them bear different but satisfactory 
macroscopic properties and, at the time point of the identification, 
it is not know which one is best reachable by the process.

• after solving the materials design problem, a total of 400 episodes 
was sufficient for the MEG-SGGPO approach to successfully guide 
the forming process to the best reachable crystallographic texture 
and to solve the process design problem.

This shows that the applied approach is highly data efficient and 
capable of effectively optimizing process-structure-property relations 
end-to-end in manufacturing processes. Moreover, we emphasize that 
the approach leverages the non-uniqueness of the materials and pro-

cess design problems, i.e. a diverse set of microstructures is identi-

fied for given desired properties and subsequently, the best reach-

able microstructure is produced. This is a significant advantage when 
transferring the approach to real manufacturing systems, where often 
constraints exist, which may exclude microstructures from being pro-

ducible.

Nonetheless, the application still needs to be validated in real manu-

facturing systems. In our specific case, the amount of required training 
data is relatively high as compared to what is available in typical pro-

duction workflows. Thus, for application in real-world manufacturing, a 
future scenario could involve pre-training the machine learning models 
with a numerical simulation that serves as a digital twin of the process 
and the material.
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[67].
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