001032626 001__ 1032626
001032626 005__ 20250203133241.0
001032626 0247_ $$2doi$$a10.1016/j.jpowsour.2024.235773
001032626 0247_ $$2ISSN$$a0378-7753
001032626 0247_ $$2ISSN$$a1873-2755
001032626 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06392
001032626 0247_ $$2WOS$$aWOS:001359959700001
001032626 037__ $$aFZJ-2024-06392
001032626 082__ $$a620
001032626 1001_ $$0P:(DE-HGF)0$$aLiu, Limin$$b0
001032626 245__ $$aSimultaneously improving sodium ionic conductivity and dendrite behavior of NaSICON ceramics by grain-boundary modification
001032626 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2025
001032626 3367_ $$2DRIVER$$aarticle
001032626 3367_ $$2DataCite$$aOutput Types/Journal article
001032626 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736765228_23768
001032626 3367_ $$2BibTeX$$aARTICLE
001032626 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001032626 3367_ $$00$$2EndNote$$aJournal Article
001032626 520__ $$aDeveloping highly conductive and reliable solid-electrolytes (SEs) is still important for the advancement of solid-statesodium batteries. NaSICON-type polycrystalline SEs exhibit the dominance of grain-boundary resistance tothe total resistance, which is mainly due to the thermal expansion anisotropy of NaSICON-type lattices. In thisstudy, we modify the grain boundaries of NaSICON-type Na3.4Zr2Si2.4P0.6O12 (NZSP) by adding 2.5 mol%Na3LaP2O8 (NLP) to counteract the effect of thermal expansion anisotropy. NLP does not serve as a sintering aidfor NZSP because the sintering temperature and relative density of NZSP is not changed. The total conductivity ofmodified NZSP increases to 7.1 mS cm
001032626 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001032626 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001032626 536__ $$0G:(GEPRIS)390874152$$aDFG project G:(GEPRIS)390874152 - EXC 2154: POLiS - Post Lithium Storage Cluster of Excellence (390874152)$$c390874152$$x2
001032626 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001032626 7001_ $$0P:(DE-Juel1)129628$$aMa, Qianli$$b1$$eCorresponding author
001032626 7001_ $$0P:(DE-HGF)0$$aZhou, Xiaoliang$$b2
001032626 7001_ $$0P:(DE-HGF)0$$aDing, Ziming$$b3
001032626 7001_ $$0P:(DE-Juel1)145209$$aGrüner, Daniel$$b4
001032626 7001_ $$0P:(DE-HGF)0$$aKübel, Christian$$b5
001032626 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b6$$ufzj
001032626 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2024.235773$$gVol. 626, p. 235773 -$$p235773 -$$tJournal of power sources$$v626$$x0378-7753$$y2025
001032626 8564_ $$uhttps://juser.fz-juelich.de/record/1032626/files/1-s2.0-S0378775324017257-main.pdf$$yOpenAccess
001032626 8767_ $$d2025-01-08$$eHybrid-OA$$jDEAL
001032626 909CO $$ooai:juser.fz-juelich.de:1032626$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001032626 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129628$$aForschungszentrum Jülich$$b1$$kFZJ
001032626 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145209$$aForschungszentrum Jülich$$b4$$kFZJ
001032626 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b6$$kFZJ
001032626 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001032626 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001032626 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001032626 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001032626 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001032626 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001032626 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001032626 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-28
001032626 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001032626 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-28
001032626 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-06
001032626 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-06
001032626 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-06
001032626 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-06
001032626 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2022$$d2024-12-06
001032626 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-06
001032626 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-06
001032626 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-06
001032626 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-06
001032626 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2022$$d2024-12-06
001032626 9201_ $$0I:(DE-Juel1)IMD-2-20101013$$kIMD-2$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001032626 9201_ $$0I:(DE-Juel1)IMD-1-20101013$$kIMD-1$$lWerkstoffstruktur und -eigenschaften$$x1
001032626 980__ $$ajournal
001032626 980__ $$aVDB
001032626 980__ $$aI:(DE-Juel1)IMD-2-20101013
001032626 980__ $$aI:(DE-Juel1)IMD-1-20101013
001032626 980__ $$aAPC
001032626 980__ $$aUNRESTRICTED
001032626 9801_ $$aAPC
001032626 9801_ $$aFullTexts