001     1032626
005     20250203133241.0
024 7 _ |a 10.1016/j.jpowsour.2024.235773
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-06392
|2 datacite_doi
024 7 _ |a WOS:001359959700001
|2 WOS
037 _ _ |a FZJ-2024-06392
082 _ _ |a 620
100 1 _ |a Liu, Limin
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Simultaneously improving sodium ionic conductivity and dendrite behavior of NaSICON ceramics by grain-boundary modification
260 _ _ |a New York, NY [u.a.]
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736765228_23768
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Developing highly conductive and reliable solid-electrolytes (SEs) is still important for the advancement of solid-statesodium batteries. NaSICON-type polycrystalline SEs exhibit the dominance of grain-boundary resistance tothe total resistance, which is mainly due to the thermal expansion anisotropy of NaSICON-type lattices. In thisstudy, we modify the grain boundaries of NaSICON-type Na3.4Zr2Si2.4P0.6O12 (NZSP) by adding 2.5 mol%Na3LaP2O8 (NLP) to counteract the effect of thermal expansion anisotropy. NLP does not serve as a sintering aidfor NZSP because the sintering temperature and relative density of NZSP is not changed. The total conductivity ofmodified NZSP increases to 7.1 mS cm􀀀 1 at 25 ◦C, surpassing other reported polycrystalline oxide SEs. Thecritical current density of Na | modified NZSP | Na symmetric cells increases to 22 mA cm􀀀 2. The cells cansurvive under long-term galvanostatic cycling up to 10 mA cm􀀀 2, indicating the unprecedented dendrite tolerance.Remarkably, the main failure mode in these cells shifts from Na-dendrite short-circuiting to the loop ofsubstantial polarizations and short-circuits.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 1
536 _ _ |a DFG project G:(GEPRIS)390874152 - EXC 2154: POLiS - Post Lithium Storage Cluster of Excellence (390874152)
|0 G:(GEPRIS)390874152
|c 390874152
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ma, Qianli
|0 P:(DE-Juel1)129628
|b 1
|e Corresponding author
700 1 _ |a Zhou, Xiaoliang
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ding, Ziming
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Grüner, Daniel
|0 P:(DE-Juel1)145209
|b 4
700 1 _ |a Kübel, Christian
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Tietz, Frank
|0 P:(DE-Juel1)129667
|b 6
|u fzj
773 _ _ |a 10.1016/j.jpowsour.2024.235773
|g Vol. 626, p. 235773 -
|0 PERI:(DE-600)1491915-1
|p 235773 -
|t Journal of power sources
|v 626
|y 2025
|x 0378-7753
856 4 _ |u https://juser.fz-juelich.de/record/1032626/files/1-s2.0-S0378775324017257-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1032626
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129628
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145209
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129667
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 1
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Elsevier 09/01/2023
|0 PC:(DE-HGF)0125
|2 APC
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2022
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-06
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2022
|d 2024-12-06
920 1 _ |0 I:(DE-Juel1)IMD-2-20101013
|k IMD-2
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IMD-1-20101013
|k IMD-1
|l Werkstoffstruktur und -eigenschaften
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IMD-2-20101013
980 _ _ |a I:(DE-Juel1)IMD-1-20101013
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21