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Optimized measurement-free and fault-tolerant quantum error correction for neutral atoms
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A major challenge in performing quantum error correction (QEC) is implementing reliable measurements and
conditional feed-forward operations. In quantum computing platforms supporting unconditional qubit resets, or
a constant supply of fresh qubits, alternative schemes which do not require measurements are possible. In such
schemes, the error correction is realized via crafted coherent quantum feedback. We propose implementations
of small measurement-free QEC schemes, which are fault tolerant to circuit-level noise. These implementations
are guided by several heuristics to achieve fault tolerance: redundant syndrome information is extracted, and
additional single-shot flag qubits are used. By carefully designing the circuit, the additional overhead of
these measurement-free schemes is moderate compared to their conventional measurement and feed-forward
counterparts. We highlight how this alternative approach paves the way towards implementing resource-efficient
measurement-free QEC on neutral-atom arrays.
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I. INTRODUCTION

Large-scale quantum computers will require quantum error
correction (QEC) to perform quantum information process-
ing [1,2]. By carefully designing the physical system one
can counteract the propagation of faults, arising from funda-
mentally noisy hardware. The logical information is encoded
in a small subspace of the physical Hilbert space of the
whole system, in a typically nonlocal way: this redundant
encoding is then robust against local errors. The redundancy,
however, introduces a significant overhead in the resources
required to implement QEC. Therefore, the choice of the
specific error-correction scheme should be tailored to a given
quantum computer, in order to minimize this overhead and
take advantage of the features of a given physical platform.
Despite the technical challenges, we are currently witnessing
exciting progress in the field of QEC, as highlighted by recent
experimental advances [3–18].

Neutral atom arrays are a promising candidate for large-
scale quantum information processors [19]. Atoms can be
manipulated in large numbers using optical tweezers (cf.
Fig. 1(a)), enabling reconfigurable geometries as well as the
physical transport of individual atoms while preserving quan-
tum information [20]. The quantum information is stored in
different atomic levels, exhibiting long coherence times of
the order of seconds. Single-qubit gates can be realized with
controlled sequences of microwave or laser pulses, which
can be performed in times of the order of 0.5 µs [21–24].
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Multiqubit entangling gates are realized via Rydberg inter-
actions between neighboring qubits. By engineering pulses
that drive the atoms to their Rydberg states and back [25,26],
high-fidelity controlled-Z gates (CZ) have been realized with
rubidium [27], strontium [28,29], ytterbium [30], and cesium
[31]. Furthermore, these gates can be slightly faster than
single-qubit gates. One can generalize this mechanism to
natively realize multicontrolled gates as well, such as CmZ ,
which were demonstrated experimentally [26,27]. This is par-
ticularly interesting from an algorithmic point of view, as this
enables fast Toffoli (CCX ) gates, which can be constructed
from CCZ and local Hadamard (H) gates.

One limitation of neutral-atom platforms is state measure-
ment, which is typically performed by inducing fluorescence
and detecting the light emitted from the atoms. Feed-forward
operations based on real-time measurements remain challeng-
ing, despite recent demonstrations [15,32–37]. Measurements
require times of the order of 500 µs, without accounting for
camera readout times and possible shuttling time of atoms
to a dedicated readout zone [15,20,38]. Therefore, there are
around three orders of magnitude in time difference between
gates and measurements in neutral-atom platforms. Coupling
the atoms to a cavity could speed up the times required for
readout [39,40], at the cost of a loss of parallelism for single-
mode cavities.

In standard QEC protocols, some partial information of
the system is measured, the error syndrome. Based on this, a
correction is decided upon by a classical algorithm (decoder)
and applied to the system, either by physical feedback or in
software [1]. Relatively slow measurements inhibit the fast ex-
ecution of such protocols. As an alternative, measurement-free
(MF) QEC protocols have been proposed [41–44], where the
classical processing is replaced with unitary dynamics. The
overall dynamics are still dissipative since we need to remove
the additional entropy introduced by faults. In MF QEC, this
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FIG. 1. (a) Optical tweezer arrays allow for the manipulation of
individual atoms in space. By placing atoms nearby, one can exploit
Rydberg interactions to perform entangling gates. Such gates can
then be used to extract stabilizer information from the system. For
example, the ancillary qubit highlighted in red can be used to extract
the stabilizer SX

1 = X1X2X3X4X5X6 of the Bacon-Shor code. (b) The
Bacon-Shor code space is generated by four six-body stabilizers:
two X stabilizers in the vertical direction and two Z stabilizers in
the horizontal direction. (c) General circuit layout for fault-tolerant
measurement-free QEC. It uses three registers of qubits: data |ψ〉L ,
flags | f 〉, ancillae |a〉. Fault tolerance is achieved via two main
ingredients: syndrome redundancy and single-shot flags. The circuit
coherently maps syndrome information of a redundant number m
of stabilizers on ancilla qubits, with m larger than the size of the
generating set of stabilizers (orange). Each extraction is aided by
flags, which detect errors occurring during the coherent mapping of
the stabilizers. The flag pattern is then used to correct these errors
on data qubits (purple). After the extraction of each stabilizer, the
qubits in the intermediary register are reset to |0〉 or, alternatively,
replaced by fresh qubits in |0〉 (R gate). Finally, the correction is
applied coherently based on the syndrome information contained in
the quantum state of the ancillae (green). Arrows represent the flow
of information.

is provided by reset operations, or a sufficiently large reservoir
of continuously provided ancilla qubits [45–47].

Recent attempts have focused on rendering such MF
schemes fault tolerant (FT): such FT constructions guarantee
that the protocol is capable of lowering failure rates provided
the physical error rates are below a break-even point, by
introducing redundancies in the syndrome under a specific
error model [48]. The first MF and fully FT explicit quantum
circuit implementation was proposed in Ref. [49], making use
of concepts from Steane-type error correction [50] (not to be
confused with the Steane code, discussed later). There, the key
is to first fault tolerantly copy the stabilizer information of the
to-be-corrected logical data qubit to an auxiliary logical qubit
register to avoid the uncontrolled propagation of errors to the
logical data qubit during the extraction of the error syndrome.
This additional register needs to be initialized fault tolerantly
into a logical state to perform the coherent error-copying
operation, which requires further overhead.

In this paper, we develop alternative strategies to construct
MF, yet fully FT QEC circuits, which are ideally suited for

application to low-distance QEC codes such as, e.g., the nine-
qubit Bacon-Shor code illustrated in Fig. 1(b). As sketched in
Fig. 1(c), these protocols involve (i) introducing redundancies
in the syndrome information, and (ii) using additional qubits
to first flag the syndrome extraction and to then apply cor-
rections on the data qubits in a single-shot fashion. These
procedures reduce the qubit overhead, and, simultaneously,
avoid the need for fault-tolerant preparation of auxiliary log-
ical states. In Sec. II, we outline our strategy, and formulate
some general heuristics with which we design concrete error-
correcting circuits. In Sec. III we demonstrate the validity
of our scheme by applying them to specific distance-three
QEC codes, namely, the Bacon-Shor code [51,52], Shor’s
code [53], the rotated surface code [54–56], and Steane’s code
[57] as the smallest two-dimensional (2D) topological color
code [58]. The performance of our MF QEC protocols is
then benchmarked and compared to comparable feed-forward
implementations in Sec. IV, for a general depolarizing noise
model as well as a noise model specific to neutral-atom arrays.
Finally, we summarize our results and discuss the possibilities
of scaling up such approaches in Sec. V.

II. GUIDELINES FOR FAULT-TOLERANT
MEASUREMENT-FREE QEC

A QEC code is described by the set of integers �n, k, d�,
where n is the number of physical qubits, k is the number
of logical qubits, and d is the code distance, meaning the
code can correct at least t = �(d − 1)/2� errors. A protocol
is said to be FT if it is capable of lower logical failure rates
than those of the physical qubit operations, provided that the
latter are below a break-even point [59,60]. This is the case
when, if the input is a codeword with error of weight r and
the protocol has s faults, with r + s � t , then the output is
the original codeword up to a correctable error. We consider
general circuit-level error models, which correspond to some
(possibly gate-dependent) quantum channel following each
operation. We therefore aim at designing specific circuits im-
plementing QEC protocols, which are FT against such errors.

Recently, fault tolerance was achieved by adopting el-
ements of Steane-type error correction, by introducing an
auxiliary register of qubits to be used as intermediary between
data and ancillae [49]. There, errors on data qubits are copied
coherently to an auxiliary register by means of a transversal
CNOT. This auxiliary register is then manipulated during the
syndrome extraction, such that errors occurring in this register
do not propagate to the data qubits. In other words, the lack
of direct communication between data qubits and ancillae
enables fault tolerance.

In this work, we suggest an alternative scheme, which
allows one to use fewer qubits and operations, as well as gates
with support on fewer qubits (at most three-qubit Toffoli-type
gates), to achieve similar performances. As summarized in
Fig. 1(c), our strategy is built upon the following elements:

(1) Syndrome redundancy. An informationally overcom-
plete set of stabilizer bits is extracted [43]. This prevents
that errors during the syndrome extraction lead to erroneous
corrections, corrupting the logical state. It also allows for the
application of the aforementioned heuristic to be applied in
the error correction. The order in which the stabilizers are read
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FIG. 2. Configurations or circuit elements to be avoided to main-
tain fault tolerance in a d = 3 QEC protocol. (a) Gates involving
more than one data qubit, as they can introduce errors on several data
qubits. (b) Gates involving a data qubit and more than one ancilla. In
fact these can immediately cause an error on the data qubit. Addition-
ally, multiple errors on the ancillae introduce additional errors on the
data later in the circuit. In contrast, single errors on the ancillae can
be tolerated by imposing a minimal syndrome redundancy, discussed
in the main text. (c) Multicontrolled gates acting on data qubits
with common one controls can cause errors on multiple data qubits.
This can occur if all one controls of the later gate are shared with
the earlier gate. The different treatment of zero controls and one
controls derives from the fact that the qubits they are controlled on
are expected to be in zero in absence of errors, as for an ancilla qubit.
Then, as depicted, a single error activates the latter multicontrolled
gate.

out needs to be chosen carefully to satisfy certain constraints,
as explained in Appendix A.

(2) Single-shot flags. Additional qubits are used to flag the
syndrome extraction [61]. Flag qubits prevent hook errors,
i.e., mid-extraction bit flips on the ancillae, from inducing
uncorrectable errors on the data. Typically, if a flag qubit is
triggered, i.e., measured in the |1〉 state, the syndrome ex-
traction circuit is repeated. Our use of flag qubits is single
shot [62], as they lead to corrections on the data qubits, im-
mediately after each stabilizer readout, without the need for
repeating the extraction circuit. Notably, we show this can be
done without measurements.

In the next section, we provide explicit examples how these
guidelines are implemented. As will be shown, they allow
for single-round FT QEC, where only one round of stabilizer
measurements is required.

While the general strategy outlined above enables fault
tolerance, it does not automatically provide FT circuit imple-
mentations. For this goal, we suggest that a FT d = 3 QEC
protocol should avoid the following configurations (illustrated
in Fig. 2):

(i) multiqubit gates involving more than a single data
qubit;

(ii) multiqubit gates in the syndrome extraction acting on
a data qubit and more than one ancilla;

(iii) certain pairs of multiqubit gates acting on data and
sharing some qubits, specifically, those outside of the syn-
drome extraction, where all the one-control qubits1 of a later
gate are also involved in an earlier one.

1In a controlled unitary, we define a one control as the qubit that
leads to the application of the unitary if the control is in |1〉. These
are illustrated in the diagrams with a filled circle.

As illustrated in Fig. 2, these guidelines prevent the spread
of errors on the input logical qubit, under the assumption of
correlated errors occurring at first order in probability on the
qubits of a single gate. These guidelines are neither sufficient
on their own, nor strictly necessary. In fact, they could be
relaxed on a case-by-case basis, depending on the presence
of correlation or bias in the noise, additional structure of the
QEC code, or the specific syndrome redundancy. Neverthe-
less, they can aid in the realization of generally FT QEC
implementations.

III. FAULT-TOLERANT
MEASUREMENT-FREE PROTOCOLS

In this section, we outline the FT circuit implementation
for the Bacon-Shor code and Shor’s code. These will illustrate
our guidelines presented in Sec. II.

These guidelines can be easily extended to any
Calderbank-Shor-Steane (CSS) code [63,64]. In Appendix B,
we provide additional circuit implementations for the surface
code and Steane’s code. In a CSS code, stabilizers are either
X -type or Z-type Pauli strings. Logical Pauli operators are
transversal, and so is the logical CNOT. These codes allow
one to treat bit and phase flips with separate subcircuits,
referred to as X and Z blocks, and which are executed one
after the other.

The general procedure for a MF implementation requires
the following steps: (i) determining the most adequate form of
redundancy in the syndrome extraction, (ii) possibly placing
flag operations to detect and correct certain errors occurring in
stabilizer extractions, and (iii) designing a correction circuit
benefiting from the redundancy. We expect that this strategy
can be further extended to any stabilizer code, albeit with a
higher overhead.

A. Bacon-Shor code

The smallest Bacon-Shor code [51,52] encodes one logical
qubit in nine physical qubits. Its code space is the joint +1
eigenspace of the following set of mutually commuting stabi-
lizer generators:

SX
1 = X1X2X3X4X5X6, SZ

1 = Z1Z2Z4Z5Z7Z8,

SX
2 = X4X5X6X7X8X9, SZ

2 = Z2Z3Z5Z6Z8Z9,
(1)

as shown in Fig. 1(b). Its logical operators can be chosen
to be XL = X1X2X3 and ZL = Z1Z4Z7. The code supports a
transversal logical Hadamard gate up to a qubit permutation
[52], and can be fault tolerantly encoded with no additional
overhead [3].

In the Bacon-Shor code, which is a subsystem code [1],
multiple states can correspond to the same codeword. These
states are equivalent up to gauge operators, which commute
with both the logical operators and the stabilizers, and as such
do not affect the logical information. The group of gauge
operators is generated by the pairs XiXj (ZiZ j) of elements
i, j in the same row (column) as of Fig. 1(b). As the gauge is
allowed to change, multiple pairs of operations XiXj and ZiZ j

do not constitute an error.
The addition of syndrome redundancy is straightforward.

Aside from the stabilizers in Eq. (1), we also extract the
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FIG. 3. Measurement-free fault-tolerant QEC implementation for the Bacon-Shor code. It coherently reads out three X -type and Z-type
stabilizers rather than only two. This redundant syndrome information allows for fault-tolerant measurement-free error correction via coherent
quantum feedback, here by Toffoli-type three-qubit gate operations. The left half of the circuit detects and corrects Z errors; the right half, after
the reset R of the ancillae to the |0〉 state, detects and corrects X errors. In this scheme, no flag qubits are required, as hook errors correspond
to single-qubit errors up to a change of gauge.

eigenvalues of

SX
3 = SX

1 SX
2 = X1X2X3X7X8X9,

SZ
3 = SZ

1 SZ
2 = Z1Z3Z4Z6Z7Z9.

(2)

These preserve the separation between X and Z blocks. Due to
the resilience of the code to multiple higher-weight errors, the
extraction of stabilizers does not require flag qubits. In fact, by
suitably ordering extraction operations, any hook error results
in at most one faulty data qubit, up to a gauge operator.

Finally, the correction blocks use Toffoli gates to apply cor-
rections on data qubits, as shown in the circuit in Fig. 3. Each
Toffoli is activated by the pair of faulty syndromes associated
with that particular error. The positioning of the gates is done
in accordance with the heuristics outlined in the previous sec-
tion. In particular, the redundancy in the syndromes allows the
gates to avoid a full overlap of controls. In turn, this prevents
single faults on the ancillae leading to erroneous correction
operations, and hence uncorrectable errors.

B. Shor’s code

Shor’s code [53] is a concatenation of the bit-flip and
phase-flip codes. It encodes one logical qubit in nine phys-
ical qubits. Its code space is the joint +1 eigenspace of the
following stabilizer generators:

SX
1 = X1X2X3X4X5X6,

SX
2 = X4X5X6X7X8X9,

SZ
a1 = Z1Z2,

SZ
a2 = Z2Z3,

SZ
b1 = Z4Z5,

SZ
b2 = Z5Z6,

SZ
c1 = Z7Z8,

SZ
c2 = Z8Z9,

(3)

as shown in Fig. 4(a). Its logical operators can be chosen to be
XL = X1X2X3 and ZL = Z1Z4Z7. Encoding the |±〉L codeword
is trivially FT. As evident in Fig. 4(a), the SZ stabilizers can be
grouped into pairs acting on separate triplets of qubits [labeled
in Eq. (3) by letters a, b, c]. Therefore, they can be read out
independently, allowing one to correct single bit-flip errors
acting on different triplets of qubits, e.g., X2X5 or X1X4X9.

The most adequate syndrome redundancy is the one pre-
serving the structure of the code. In order to maintain the
separation between X and Z blocks, and between the triplets
with different SZ stabilizers, we also extract the following

stabilizers:

SX
3 = X1X2X3X7X8X9,

SZ
a3 = Z1Z3,

SZ
b3 = Z4Z6,

SZ
c3 = Z7Z9.

(4)

Readout of weight-two stabilizers does not require flags.
Instead, the readout of weight-six stabilizers is made FT by
the addition of two flag qubits. As illustrated in Fig. 4(c),
these flags detect bit flips on the ancilla occurring during the
extraction. The placement of the flag operations is chosen to
detect hook errors [62]. Then, gates controlled on the flags
and acting on the data prevent said bit flips from becoming
unrecoverable errors, in a FT way. In contrast to conventional
flagged circuits [61], this design does not require measure-
ments, as the same extraction circuit is run independently of
the values of the flags. This deterministic scheme resembles
that in Ref. [62], but is simplified and implemented without
measurements and feed-forward operations. It requires fewer
gates at the price of allowing multiple, yet correctable, bit flips
to propagate. This is not problematic as they can be corrected.

Finally, the correction blocks closely resemble those of the
Bacon-Shor code. The full circuit of our implementation is
shown in Fig. 4.

IV. PERFORMANCE

In this section we benchmark our protocols against
hardware-agnostic depolarizing noise (Sec. IV A), and a noise
model tailored to neutral atom arrays (Sec. IV B). Details of
the models are given in the relevant subsections. We simulate
a single round of error correction, as we are mostly inter-
ested in assessing the fault tolerance of our protocols and
comparing their relative performance, similarly to Ref. [49].
For estimating the performance of an actual device, it may be
preferable to average the performance over multiple rounds of
error correction, but we do not expect a qualitative difference.

We simulate our circuits, which heavily use non-Clifford
gates, with state vector simulations using CIRQ [65]. We note,
however, that scalable methods to simulate MF QEC circuits
have been developed, exploiting the fact that under a Pauli
noise model the ancilla qubits are effectively classical bits
[48]. However, given that the system sizes are accessible to
state vector simulations, we perform simulations with modest
resources in the following fashion. First, we confirm the fault
tolerance of the protocols by simulation of all possible single

043253-4



OPTIMIZED MEASUREMENT-FREE AND … PHYSICAL REVIEW RESEARCH 6, 043253 (2024)

|ψ L

|a
R

R

R

R

R

R

R

R

R

|ψ L

|f

|a
R

R

R

R

R

H

R

R

H

R

R

H

H

H

H

3 6 9

2 5 8

1 4 7

SX
1 SX

2

SZ
a1 SZ

b1

SZ
a2 SZ

b2

SZ
c1

SZ
c2

(a)

(c)

(b)

FIG. 4. Measurement-free fault-tolerant QEC implementation for the nine-qubit Shor code. (a) Stabilizers of the Shor’s code. The SZ

stabilizers can be grouped into pairs acting on different triplets of qubits (a pair for each column). (b) Circuit for the correction of bit flips.
Note how the syndrome extraction and correction occur separately for each triplet of qubits having separate SZ stabilizers. (c) Circuit for
the correction of phase flips. Operations acting on flags are depicted in purple, and their specific location is chosen to detect and correct
uncorrectable hook errors. The two flag operations at the end of each stabilizer measurement (a CNOT and a Toffoli) apply these corrections
on the data qubits. An example of how a hook error propagates and is caught by the flag qubits is highlighted in red.

faults. To compute the logical failure probability, we perform
a Monte Carlo simulation starting from an ideal codeword,
sampling Kraus operators at each error location according to
the chosen noise model. Because of fault tolerance, we only
simulate circuits with two or more errors. The logical failure
probability is then estimated as

plog = p2+
log p2+

err , (5)

where p2+
log is the average failure probability associated to hav-

ing two or more errors in the circuit, and p2+
err is the probability

two or more errors occurring. This is given by

p2+
err = 1 − p0

err − p1
err, (6)

with

p0
err =

∏
i

(1 − pi )
Ni , p1

err = p0
err

∑
i

Ni pi

1 − pi
, (7)

where pi is the probability that a gate of type i is faulty, and Ni

is the number of such gates. The averaging is performed over
60 000 simulations, with inputs equally distributed among
|0〉L, |+〉L and |i〉L

2.

A. Depolarizing noise

We consider the hardware-agnostic depolarizing chan-
nel. Given the set of Pauli strings of length �, i.e., P� =

2This corresponds to a Haar-uniform sampling over initial logical
states.

{I, X,Y, Z}⊗�, it is defined as

E (ρ) = (1 − p)ρ + p

|P�| − 1

∑
P∈P�

P �=I⊗�

PρP†, (8)

where p is the probability of an error occurring. In other
words, after each gate we apply with probability p an operator
sampled uniformly from all nontrivial Pauli strings.

The depolarizing channel is a fairly general error model,
and is a standard benchmark of QEC protocols. We study both
a MF and feed-forward (FF) version of our QEC protocols. In
the latter, flags and ancillae are measured, and the correction
circuit is substituted by conventional correction operations,
which are only applied if required according to a lookup
table decoding. Initialization operations, measurements, and
correction operations have the same error rate pphys = p as
other operations, whereas idling errors are neglected. The set
of required gates {X, H,CX,CZ,CCX,CCZ} is assumed to
be natively supported.

The logical performance of each protocol is shown in
Fig. 5; their pseudothresholds and resource overhead are sum-
marized in Table I. The pseudothreshold is directly connected
to the number of gates and the correction capabilities of each
implementation. It is not surprising that the implementations
which are both shorter and resilient to higher weight errors,
such as of the Bacon-Shor or Shor’s code, lead to the best
performance. On the other hand, Steane’s code cannot correct
higher weight errors. Furthermore, the logic in its correction
step is more involved and has the largest number of Toffoli
gates. As such, this protocol performs worse than other codes.
It is worth noting that both the correction capabilities and the
resources overhead of a protocol can in part be inferred from
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FIG. 5. Logical qubit error rate vs physical one, under symmetric depolarizing noise of Eq. (8) for the (a) measurement-free and (b) feed-
forward implementations. Solid lines correspond to the numerical fits used to estimate the pseudothresholds. The fit is performed with a
polynomial of the form plog = c2 p2

phys + c3 p3
phys + c4 p4

phys. Since single-qubit errors are correctable due to the FT character of the protocols,
the zeroth and first order are vanishing, while terms beyond the fourth degree are negligible at the considered physical error rates. (c) Numerical
estimates of the pseudothresholds.

the structure of the stabilizers. In fact, codes with stabilizer
generators having fewer common qubits, as in Shor’s and the
surface code, generally have lower logical error rates.

Compared to the single-shot FF implementations, it
is not surprising that the MF approach, which has
considerably deeper circuits, returns a higher logical error
rate at the same physical error rate. However, it is remarkable
that the MF overhead consistently lowers the pseudothresh-
old only by a factor of approximately 2. This suggests that
MF QEC represents a valuable alternative for architectures
in which measurements are technically challenging or come
with a large time overhead. This will be explored in the next
subsection.

We may also ask what is the performance of our single-
shot FF implementations compared to conventional flag-based
implementations in the literature. For the Bacon-Shor code,

TABLE I. Comparison of measurement-free and feed-forward
implementations, when natively supporting any required gate. The
number of qubits refers to the minimal number required by the
implementation since each reset can be replaced by an additional
qubit. The gate count is divided into initialization/reset, one-, two-,
three-qubit gates, and measurements. For FF approaches, this does
not count the Pauli corrections applied after the decoding of the mea-
surements, as their number varies between runs. The pseudothreshold
pth is computed under symmetric depolarizing noise in absence of
idling errors.

No. gates
Protocol No. qubits (R, G1, G2, G3, M) pth (%)

Bacon-Shor (MF) 12 6 6 36 6 0 0.56
Bacon-Shor (FF) 10 6 6 36 0 6 0.76
Shor (MF) 14 18 6 51 15 0 0.36
Shor (FF) 12 18 6 48 0 18 0.64
Surface (MF) 17 20 24 40 22 0 0.30
Surface (FF) 10 12 12 40 0 12 0.62
Steane (MF) 14 38 26 90 32 0 0.07
Steane (FF) 10 30 20 90 0 30 0.15

Shor’s code, and Steane’s code, we consider the implementa-
tion with parallel flags outlined in Ref. [66]. Again, we stress
that in this scheme, the flags are not single shot, i.e., after they
signal the presence of an error, a new circuit is run. Overall,
similar performance is achieved since the pseudothresholds
they obtained are 0.86 %, 0.98 %, and 0.13 %, respectively
(cf. Table I). Regarding the rotated surface code, we compare
our scheme with the recent results from Ref. [67,68], where
corrections are applied after the decoding of d rounds of syn-
drome measurements, achieving thresholds of 0.55%–0.94%,
depending on the decoding technique used3. Our implemen-
tation achieves a comparable pseudothreshold (cf. Table I) by
measuring half as many stabilizers. Moreover, as comparing
pseudothreshold with threshold values can be misleading, we
observe that our protocol achieves lower logical error rates at
same physical rates. A full comparison, which would require
the use of similar decoding techniques, is beyond the scope of
this paper.

B. Noise model for neutral atoms

In neutral-atom architectures, the large difference between
gate times and measurement times [15,38] means that idling
errors on data qubits during measurements cannot be ne-
glected (cf. Appendix C 3). Therefore, in this subsection, we
compare the behavior of MF and FF protocols under a noise
model which, albeit simplified, reproduces key features of
neutral atom arrays.

For single-qubit gates, we consider quasistatic fluctuations
in the driving parameters. In other words, we assume these
fluctuations are slow enough compared to gate times, such that
they can be considered static coherent errors for a single gate.
By averaging over independent realizations of such fluctua-
tions, and performing the Pauli twirling approximation (PTA)

3We note that the thresholds claimed are for a single logical basis
state different than |i〉L , which in our simulations lowers the logical
performance.
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FIG. 6. Logical vs physical error rate of our protocols for the (a) Bacon-Shor code, and (b) Steane’s code, under the simplified noise model
for Rydberg-atom arrays described in Sec. IV B. The MF protocol is compared against FF implementations with varying idling error rates pidle.
Data points of the FF protocol correspond to 15 000 simulations. First, we note there is a regime above a critical idling rate ∼10−2 where the
logical error rate is always higher than the physical one. Second, for low gate error rates, idling errors dominate, and the MF approach, which
under the described noise model is not affected, outperforms the FF protocol. The inset shows the regimes at which MF and FF implementations
are advantageous as a function of p2 and pidle. Current state-of-the-art experiments report p2 ≈ 5 × 10−3 across various atomic species [15,29–
31], while idling errors greatly vary between slightly less than 10−3 and 4 × 10−2 [15,35–37]. Data points are numerical estimates of noise
rates at which the protocols yield equivalent performances, matching the prediction in Eq. (14).

[69–73], we obtain the following effective error channels for
the X and H gates:

EX (ρ) = (1 − p1)ρ + p1

2
XρX + p1

2
ZρZ, (9a)

EH (ρ) =
(

1 − 3p1

4

)
ρ + 3p1

8
XρX + 3p1

8
ZρZ. (9b)

The details of the derivation are provided in Appendix C.
The only native multiqubit gates are CmZ gates. Their main

source of infidelity is given by the decay from Rydberg states,
which are auxiliary states with strong interatomic interactions
used during the gate protocol to create entanglement between
nearby atoms. By performing the PTA, this results in the noise
channel (cf. Appendix C)

EC�−1Z (ρ) = (1 − p�)ρ + p�

2� − 1

∑
P∈{I,Z}⊗�

P �=I⊗�

PρP†, (10)

i.e., controlled phase gates are only affected by Z-type er-
rors. For example, the Kraus operators for the CZ gate are√

p2/3 Z1,
√

p2/3 Z2,
√

p2/3 Z1Z2. We note that, under this
biased noise, flags are superfluous and some constraints from
Sec. II could be relaxed. Nevertheless, our noise model might
be too simplistic; hence, for a fair comparison, we decided to
run the generally FT circuits outlined in Sec. III.

We simulate our implementations of the Bacon-Shor code
in presence of such noise. We varied p2, while fixing p1 =
p2/5 and p3 = 4p2. Furthermore, initializations and measure-
ments were subject to bit flips with respective rates pi = p1/2
and pm = p2/2. These values and ratios of error rates roughly
describe recent experiments [15,27].

We also simulate the FF protocols with varying idling error
rate pidle, with the idling noise channel

Eidle(ρ) = (1 − pidle )ρ + pidle ZρZ, (11)

affecting data qubits before corrections are applied. Owing
to the large difference between gate times and measurement
times in neutral-atom arrays, we ignore idling errors in the MF
setting. In principle, one should take into account additional
idling errors during shuttling operations to perform nonlocal
gates, for both MF and FF protocols. However, for the codes
considered, the shuttling distances would be small on a 2D
geometry, inducing a negligible time overhead compared to
measurements.

Results are shown in Fig. 6. Notably, the behavior of the
logical error rate in FF protocols can be categorized into
three regimes. For a protocol with n data qubits and N gates,
respectively, to leading order we have

pFF
log =

⎧⎪⎨
⎪⎩

O
(
N2 p2

2

)
for p2 > pidle,

O(N n p2 pidle ) for p2 � pidle,

O
(
n2 p2

idle

)
for p2 � pidle.

(12)

Idling errors are independent of the quality of gates, thus,
as the latter improves, idling errors may constitute an insur-
mountable limit in the performance of FF protocols. In the
first place, this implies that for some pidle there is only a finite
region where feed-forward gives an advantage over physical
qubits. Second, as we considered idling errors negligible in the
MF setting, the MF protocols eventually outperform the re-
spective FF implementations as the quality of gates improves.
Considering that in FT MF protocols, the logical error rate
scales as

pMF
log = O

(
N2 p2

2

)
, (13)
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the protocols yield equivalent performances when

pMF=FF
2 = O

( n

N

)
pidle. (14)

This matches the result in the inset of Fig. 6. We estimate that
for the Bacon-Shor and Steane’s protocols, the proportionali-
ties are ∼0.68 and ∼0.12, respectively, in both cases roughly
4n/N .

Finally, we note that current state-of-the-art experiments
with neutral atoms have achieved p2 ≈ 5 × 10−3 and pidle �
10−3 [15]. Such estimates place this experiment in the FF
regime, albeit not far from the MF. Additional results without
idling errors can be found in Appendix D. For a practical
implementation, the choice of FF vs MF may not be dictated
only by the logical error rate, but also by considerations on
the QEC cycle rate. Considering the large difference between
measurement times and gate times, MF QEC can be a prefer-
able setting for performing repeated QEC cycles, even if this
incurs in a small performance penalty. Additionally, in neutral
atoms long idling times incur in atom loss, which are outside
of the computational subspace. Such difficulties have, to date,
prevented the practical demonstration of repeated QEC cycles
with neutral atoms.

V. SUMMARY AND OUTLOOK

In summary, we have proposed several implementations of
measurement-free QEC schemes based on syndrome redun-
dancy and single-shot flags. The classical logic traditionally
involved in QEC schemes is moved within the quantum circuit
and is performed using quantum gates. These implementa-
tions have been designed with near-term quantum hardware
in mind, with focus on the smallest nontrivial CSS codes. By
using the guiding principles outlined in Sec. II, we design
quantum circuits which are FT, with lower overhead than in
alternative proposals [48,49].

The measurement-free QEC protocols for the Bacon-Shor
code and Shor’s code provide examples that we constructed
using such heuristics, as discussed in detail in Sec. III. We
furthermore show that these guidelines can be extended to
any CSS code, although one needs to adapt the correction
step to remain FT. This can be achieved by using auxiliary
qubits for decomposing larger multicontrolled operations, as
is discussed in the cases of the surface code and Steane’s
code in Appendixes B 1 and B 2. By careful circuit design, the
additional overhead of measurement-free QEC can be kept to
a minimum.

The development of such measurement-free techniques
could be beneficial for the design of more traditional feed-
forward implementations as well. The proposed redundant
syndrome extraction is of interest for so-called single-shot
decoding [74], which allows for a robust protocol without
repeating extraction rounds. The overhead of repeating syn-
drome extraction or using flags could be reduced, simply by
extracting an overcomplete set of stabilizers.

We have benchmarked our scheme with numerical simula-
tions under depolarizing noise, both for the measurement-free
and feed-forward implementations, as summarized in Table I.
The feed-forward protocols achieve performances comparable
with state-of-the-art techniques, thus they represent a compet-

itive single-shot alternative. Our measurement-free protocols
have pseudothresholds that are only about a factor of 2 smaller
than the ones of the comparable feed-forward implementa-
tions. Particularly interesting are the ones that can correct the
most higher-weight errors and use the fewest gates, with the
Bacon-Shor code showing the best performance overall.

Measurement-free schemes are particularly interesting in
quantum-computing platforms where measurements are a
main bottleneck, such as neutral-atom arrays. For such plat-
forms, we have derived a simplified noise model, which
leads to improved pseudothresholds, within the reach of
current state-of-the-art experimental error rates [15]. Addi-
tionally, we have performed a more realistic comparison with
feed-forward QEC by adding idling errors during measure-
ments, and observed that, as the quality of the gates improves,
idling errors significantly drag down the performance of the
protocols. In this context, measurement-free implementations,
where idling errors play less of a role or even can become
negligible, outperform the respective feed-forward protocols.

Neutral-atom arrays have additional features particularly
suited for measurement-free QEC. Multicontrolled gates, such
as the CCZ , necessary for the correction step, are natively
supported on the hardware. Additionally, shuttling via optical
tweezers could enable the increased connectivity required. We
emphasize that these numerical results should be taken not too
literally: the noise model for Rydberg atoms is undoubtedly
overly simplistic, as it neglects other sources of errors, such as
atom loss or leakage outside of the computational subspace.
Including these effects into a refined noise model would in-
crease the numerical cost, and more importantly, will require
further assumptions on the specific qubit encoding used. We
leave this as a possible direction for future work.

We emphasize that the proposed measurement-free error-
correction schemes are not solely relevant to neutral-atom
arrays. The only requirement is the availability of fast and
locally addressable reset operations or, alternatively, of a suf-
ficiently large reservoir of fresh ancillae. In this case, a full
or partial measurement-free scheme can be beneficial, as one
can trade measurements for quantum gates. This could lead to
a faster or less error-prone QEC implementation, depending
on the hardware specifics. With Rydberg atom arrays in mind,
we focused on the case of native multicontrolled gates, such
as CCZs. As shown in Ref. [49], such gates can be fault
tolerantly decomposed rather efficiently if the controls are
on ancillas4. We therefore expect that our correction circuits
can be adapted to use only one- and two-qubit gates, with a
moderate performance overhead.

Having near-term devices in mind, we have only consid-
ered d = 3 codes. Scaling up error-correcting capabilities is
hard to achieve in a purely measurement-free setting. For
higher-distance codes, the decoding logic becomes nontriv-
ial and, accordingly, it becomes much more challenging to
design a FT correction circuit. Code concatenation could pro-
vide an alternative approach for scaling to larger distances.
The implementations presented in this paper can be realized
with a native gate set of {H, X,CZ,CCZ}. If this set can

4A single Toffoli gate with resets on the controls decomposes into
four CNOTs and six single-qubit gates.
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be implemented at the logical level, then the code could be
concatenated with itself. This could possibly be achieved with
Steane’s code, as it supports all Clifford gates as well as the
so-called pieceable FT CCZ gates [75]. Similarly, concatena-
tion could be achieved with codes supporting fold-transversal
gates such as the surface code or the Bacon-Shor code.
Alternatively, rather than attempting to scale up measurement-
free QEC, we believe that small measurement-free blocks
could be beneficially concatenated within conventional feed-
forward protocols. In this setting, measurements could be
performed much less frequently, while the measurement-
free units run fast and autonomously. Recent experiments
have demonstrated that neutral-atom arrays are well suited
to implementing small error-correcting blocks in a modular
fashion [15]. By avoiding or minimizing measurements, the
measurement-free approach could lead to improvements in the
logical qubit fidelity or, at least, provide significant speedups
of the durations of QEC cycles.

Concatenation also opens up the possibility of implement-
ing universal quantum computation. Steane’s code could be
concatenated with a code with transversal T gates, such as
three-dimensional (3D) color codes or triorthogonal codes
[76–78]. In such constructions, code distance is traded for
a larger set of transversal gates. Incorporating measurement-
free QEC into such logical gate constructions could be key to
achieving fast universal quantum computation.
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APPENDIX A: REQUIREMENTS
ON REDUNDANT SYNDROMES

This Appendix defines a constraint on the order in which
stabilizers are extracted within our implementations of QEC
protocols for d = 3 codes. Error syndromes obtained from the
extraction of m stabilizers are bit strings b = (x1, . . . , xm).
Ideal decoding associates syndromes to correction operations.
Let us call a syndrome bit string b̃i active if it leads to a correc-
tion operation different than the identity. Since the extraction
of stabilizer eigenvalues is sequential, the order matters. In
particular, we require that, given the set of active syndromes
S̃ = {b̃i}

b̃i �= Rs
(
b̃ j

) ∀ i, j, s, (A1)

where Rs(b̃ j ) returns b̃ j with the first s 1s turned into 0s.

FIG. 7. Circuit for detecting bit flips in the Steane code, illus-
trating the requirement for two extra syndromes to be FT. SZ

1 , SZ
2 ,

SZ
3 , defined in Eq. (B2), are the Z-type stabilizer generators. SZ

4 is
the product of the three. All of them involve data qubit 7. An error
X7 occurring at the end of the SZ

2 syndrome is measured by the
following stabilizers. This returns the syndrome 0011, leading to
the correction X1. Together with the previous error X7, this forms
an uncorrectable weight-two error. We have exhaustively verified
that no ordering of any combination of four stabilizers can satisfy
Eq. (A1). An appropriate redundancy is instead used in Fig. 9.

This requirement stems from the fact that stabilizer ex-
tractions are prone to errors. Assume a logical codeword is
passed as input to the QEC circuit, and that we are measuring
Z-type stabilizers. Assume all stabilizer extractions are fault
free except for a single one, the sth involving the ith data qubit.
During this extraction, a bit flip Xi occurs on the said data
qubit. The syndrome bit string b̃i, leading to the correction
Xi, is not observed, as the data were fault free in the first
s extractions involving data qubit i. Instead, b̃ j = Rs(b̃i ) is
observed. If b̃ j leads to correcting a different data qubit, the
protocol accumulates two different errors. This would spoil
fault tolerance. Analogous considerations hold for phase flips
occurring during extraction of X -type stabilizers. This is il-
lustrated in Fig. 7 for the Steane code, further described in
Appendix B 2.

The requirement in Eq. (A1) can be generalized to non-
CSS codes by adding additional constraints, arising from the
fact that different operators are measured on the same qubits
during the syndrome extraction procedure. Thus, we expect
our strategy to be applicable for non-CSS codes, albeit with
higher overhead.

APPENDIX B: ADDITIONAL CSS CODES

This Appendix contains the MF implementations for the
rotated surface code and Steane’s code.

1. Surface code

The smallest error-correcting surface code �9, 1, 3�
[54–56] has the following stabilizer generators:

SX
1 = X8X9,

SX
2 = X5X6X7X8,

SX
3 = X2X3X4X5,

SX
4 = X1X2,

SZ
1 = Z6Z7,

SZ
2 = Z1Z2Z5Z6,

SZ
3 = Z4Z5Z8Z9,

SZ
4 = Z3Z4,

(B1)
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(a) (b)

(c)
(d)

FIG. 8. Fault-tolerant MF implementation for the surface code,
using a total of 17 qubits (9 data qubits, 6 ancilla, and 2 interme-
diary qubits). (a) Stabilizers of the d = 3 surface code. (b) General
scheme for single-shot correction of a bit or phase flip. This involves
a redundant extraction of stabilizers, and an error-correction (EC)
block. (c) Syndrome measurement of the SZ

2 stabilizer. As for the
other stabilizers, it does not require any flags, as long as the first
two and the last two extracted operators constitute a weight-two
correctable error, which is allowed to propagate onto the data qubit
register. (d) FT MF correction circuit for bit flips. The circuit for
correcting phase flips is analogous, with CCZ gates substituting the
Toffoli gates acting on data qubits.

as shown in Fig. 8(a). Its logical operators can be chosen to be
XL = X1X6X7 and ZL = Z1Z2Z3. A FT MF codeword encoding
has been introduced in [79]. Figure 8 illustrates our FT MF
design with a total of 17 qubits.

We notice that the code has a certain symmetry. Stabilizers
come in pairs that are specular with respect to qubit 5, and so
is the optimal decoding, which is shown in Table II. Therefore,
we added two new syndromes, S12 = S1S2 and S34 = S3S4,
that preserve the symmetry.

TABLE II. Optimal one-round decoding for the surface code. xy
denote digits of the syndrome that are irrelevant for that specific
correction. This enables weight-two corrections: for example, bit-flip
syndrome 1101 leads to correction X3X6.

Syndrome (S1, S2, S3, S4) X correction Z correction

01(xy �= 10) X2 Z6

xy01 X3 Z1

xy11 X4 Z2

0110 X5 Z5

11xy X6 Z8

10xy X7 Z9

(xy �= 01)10 X8 Z4

The code is very modular, as stabilizers are well localized
and share only few qubits. This makes the code capable of
correcting multiple weight-two errors: all the pairs XiXj such
that there exists no k for which XL = XiXjXk , and similarly
for Z . As noted in Ref. [80], this implies that the extraction
of weight-four stabilizers does not require flags if gates are
opportunely ordered, as in Fig. 8(c). Trivially, the readout of
weight-two stabilizers does not require flags either.

The symmetry of the code allows for a simple design of
a MF correction circuit, capable of implementing the optimal
decoding of Table II. The correction circuit is illustrated in
Fig. 8. Note how it uses an intermediate register between
ancillae and data qubits. The intermediary register prevents
single faults to cause errors on both ancillae and data qubits, in
a fashion similar to [49], but with fewer qubits, as well as gates
with support on fewer qubits (Toffoli-type gates, supported on
three qubits).

2. Steane’s code

Steane’s code �7, 1, 3� [57] has the following stabilizer
generators:

SX
1 = X4X5X6X7,

SX
2 = X2X3X6X7,

SX
3 = X1X3X5X7,

SZ
1 = Z4Z5Z6Z7,

SZ
2 = Z2Z3Z6Z7,

SZ
3 = Z1Z3Z5Z7,

(B2)

as illustrated in Fig. 9(a). Its logical operators can be chosen
to be XL = X1X2X3 and ZL = Z1Z2Z3. The Steane code has
the computational advantage of providing transversal Clifford
logical operations. A FT MF encoding of the logical states has
been recently introduced in Ref. [49]. Figure 9 illustrates our
FT MF 14-qubits design.

As shown, a single extraction block (for bit or phase flips)
measures five stabilizers, two more than the minimum re-
quired. Aside from those in Eq. (B2), we measure S12 = S1S2

and S13 = S2S3. In fact, by exhaustively checking the possible
combinations and permutations, it can be verified that the
addition of only one stabilizer is not sufficient to satisfy the
constraint outlined in Appendix A, and therefore fault toler-
ance cannot be achieved. A full redundancy, achievable by
measuring seven syndromes as in Refs. [43,48], is not only
unnecessary, but perhaps even detrimental as it would largely
increase both the number of qubits and the number of gates
employed.

As shown for stabilizer SZ
1 in Fig. 9(c), extractions are

supported by single-shot flags, as for our implementation of
Shor’s code in Sec. III B. In contrast to conventional flagged
circuits [61], this design does not require measurements, as
the same extraction circuit is run independently of the values
of the flags.

Finally, Fig. 9(d) outlines our FT MF correction block. As
for the surface code, it uses an intermediate register, here a
single qubit, between ancillae and data qubits to avoid single
faults to spread.
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(a) (b)

(c)

(d)

FIG. 9. Fault-tolerant MF implementation of the Steane code,
using 14 qubits. (a) Stabilizers of Steane’s code, the smallest color
code [58]. (b) General scheme for single-shot correction of a bit or
phase flip. This involves a redundant flagged extraction of stabilizers,
and an error-correction (EC) block. (c) Syndrome measurement of
the SZ

1 stabilizer. Single-shot flags, whose operations are highlighted
in purple, prevent uncorrectable errors from spreading, in the same
fashion as depicted in Fig. 4. (d) Correction circuit for bit flips. The
correction of phase flips uses an analogous circuit, with CCZ gates
replacing the Toffoli gates acting on data qubits.

APPENDIX C: SIMPLIFIED NOISE MODEL
FOR NEUTRAL ATOMS

In this Appendix, we construct a simple effective noise
model to account for imperfections in neutral-atom arrays.

1. Single-qubit gates

We begin by considering a laser-driven two-level system.
The Hamiltonian between the two computational states reads
as

H = �

2
(eiφ |1〉 〈0| + H.c.) + �

2
(|0〉 〈0| − |1〉 〈1|)

= �

2
(cos φX + sin φY ) + �

2
Z, (C1)

where � is the Rabi frequency, φ is the laser phase, and � the
detuning of the laser with respect to the transition frequency.
By evolving the system for a time t (assuming, for simplic-
ity, a constant profile for � and �), we obtain the unitary
U = exp(−iHt )

U = cos θ − i sin θ

(
�

�̃
cos φX + �

�̃
sin φY + �

�̃
Z

)
, (C2)

where �̃ = √
�2 + �2 and θ = �̃t

2 . In the following, we
consider static fluctuations of the driving parameters, which

is physically motivated when these fluctuations happen over
timescales much larger than the typical gate times. We there-
fore average Eq. (C2) over different realizations with the
driving parameters drawn from a Gaussian distribution. This
generates the channel 	(ρ) = UρU †, where the bar denotes
the averaging over the stochastic variable.

For example, we account for phase noise by setting φ = ξ ,
where ξ ∼ N (0, σ 2). This corresponds to slow fluctuations
of the laser phase during the driving. It also corresponds to a
simplified model of the momentum transfer between photons
and the atom in the laser field, which imprints a phase factor
eik·x for a wave vector k and the atomic center of mass x.

Considering the noiseless gate U0 generated by Eq. (C2) at
φ = 0, we can then perform the average over ξ , and obtain the
channel

	ph(ρ) �
(

1 − σ 2

2

)
U0ρU †

0 + σ 2

2
cos2 θρ

− i
σ 2

2
cos θ sin θ

�

�̃
(Zρ − ρZ )

+σ 2 sin2 θ

[
−1

2

�2

�̃2
XρX + �2

�̃2
Y ρY + 1

2

�2

�̃2
ZρZ

]
,

(C3)

where we have applied the following first-order
approximations:

eiφ = cos φ = e−σ 2/2 � 1 − σ 2

2
, cos2 φ � 1 − σ 2,

sin φ cos φ � 0, sin2 φ � σ 2.

For the case of the X gate (� = 0 and t = π/�) and H
gate (� = � and t = π/�̃), Eq. (C3) reduces to

	
ph
X (ρ) = (1 − σ 2)XρX + σ 2Y ρY, (C4a)

	
ph
H (ρ) =

(
1 − σ 2

2

)
HρH

−σ 2

4
XρX + σ 2

2
Y ρY + σ 2

4
ZρZ. (C4b)

In the context of quantum error correction, we typically ex-
press the noise operation as a channel after the desired gate
U0, i.e.,

	U0 (ρ) = EU0(U0ρU †
0 ). (C5)

For the phase noise in Eq. (C4), we then obtain

Eph
X (ρ) = (1 − pph )ρ + pphZρZ, (C6a)

Eph
H (ρ) =

(
1 − pph

2

)
ρ − pph

4
XHρHX

+ pph

2
Y HρHY + pph

4
ZHρHZ, (C6b)

where we define pph = σ 2.
We now perform the Pauli twirling approximation (PTA)

Ẽ (ρ) =
∑
P∈P�

P†E(PρP†)P (C7)
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to approximate the channels above with the closest possible
Pauli channel [69–73]. This can be experimentally realized by
physically applying a random Pauli string before and after the
gate.

Using the PTA in Eq. (C7), the latter becomes

Ẽph
H (ρ) =

(
1 − pph

2

)
ρ + pph

4
(XρX + ZρZ ). (C8)

Similarly, we can account for fluctuations of the pulse area by
setting θ = θ0(1 + ξ ) in Eq. (C2) where ξ ∼ N (0, σ 2). This
can be seen as an amplitude fluctuation, and fluctuations on
the amplitude can, in the case of Raman transitions, induce
correlated fluctuations on the detuning [81]. By performing
similar steps to the case of phase noise, we obtain

	time(ρ) � (
1 − 2θ2

0 σ 2
)
U0ρU †

0 + θ2
0 σ 2(ρ + KρK ), (C9)

where K = �

�̃
X + �

�̃
Z . For the X and H gates this corresponds

to

	time
X (ρ) =

(
1 − π2σ 2

4

)
XρX + π2σ 2

4
ρ, (C10a)

	time
H (ρ) =

(
1 − π2σ 2

4

)
HρH + π2σ 2

4
ρ. (C10b)

This leads to

E time
X (ρ) = (1 − ptime)ρ + ptimeXρX, (C11a)

E time
H (ρ) = (1 − ptime)ρ + ptimeHρH, (C11b)

where we define ptime = π2σ 2/4. Performing the PTA on the
error channel for the H gate yields

Ẽ time
H (ρ) = (1 − ptime)ρ + ptime

2
(XρX + ZρZ ). (C12)

Putting everything together, choosing pph = ptime yields the
result in the main text (cf. Sec. 9), with p1 = pph + ptime.

2. Multicontrolled gates

An entangling gate can be realized in neutral atoms by
driving the |1〉 state to an auxiliary Rydberg |r〉 state. Ideally,
the |r〉 state is completely unoccupied after the protocol has
been performed. The main source of error comes from the
spontaneous decay from the |r〉 state. Here we assume sim-
plistically that the decay from the |r〉 state can only happen
to the |1〉 state. Such effects have been explored to mitigate
errors arising from leakage outside of the computational sub-
space, and are broadly referred to as erasure conversion, both
in theoretical proposals [82,83], as well as in experimental
setups [32,84]. Here we follow a similar approach to Ref. [83].
We assume that with perfect erasure conversion, all remaining
populations in the Rydberg state (for example, due to driving
imperfections) are brought back to the |1〉 state. Importantly,
we assume that the erasure conversion can be achieved solely
by incoherent repumping, and not via measurements. We then
derive the associated quantum channel.

A CmZ gate is supported on � = m + 1 qubits. The error
channel is Edecay

CmZ (ρ) = ∑
s KsρK†

s , where the Kraus operators
are indexed using the basis state |s〉 = |s1, s2, . . . , s�〉 that is

subject to decay,

Ks =
⎧⎨
⎩

|0〉 〈0| +
√

1 − p
∑
s′ �=0

|s′〉 〈s′| if s = 0,

√
p |s〉 〈s| otherwise,

(C13)

where we define |0〉 = |00 . . . 00〉. We assume that all the
states s �= 0 are subject to the same decay probability p during
the gate protocol. This is realistic since in the blockaded
regime only one |r〉 state can be excited at a given time, so
their decay probability should be similar. Expanding to first
order in p we obtain

KsρK†
s �

{
(1 − p)ρ + p

2
(|0〉 〈0| ρ + ρ |0〉 〈0|) if s = 0,

p |s〉 〈s| ρ |s〉 〈s| otherwise.

(C14)

Using the identities |0〉 〈0| = 1
2 (I + Z ) and |1〉 〈1| = 1

2 (I − Z )
we twirl each term with Eq. (C7) to obtain

˜KsρK†
s �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
1 −

(
1 − 1

2�

)
p

]
ρ if s = 0,

p

(2�)2

∑
P∈{I,Z}⊗�

PρP† otherwise.
(C15)

Finally, the twirled channel contains all combinations of Z
operators on each qubit:

Ẽdecay
C�−1Z (ρ) =

(
1 − (2� − 1)2

(2�)2
p

)
ρ + 2� − 1

(2�)2
p
∑

P∈{I,Z}⊗�

P �=I⊗�

PρP†.

(C16)
This result generalizes the one in Ref. [83] and is equivalent
to Eq. (10) with p� = (2� − 1)2 p/(2�)2.

This would suggest p3 ≈ 1.36 p2. However, the gates have
different decay probabilities. Then, accounting for the fact
that a CCZ gate is approximately twice as long as a CZ
gate [85], and taking into account extra contributions from
laser imperfections, we choose p3 = 4p2 for our numerical
simulations, matching recent experiments [15,27].

3. Idling errors

In neutral-atom qubits, dephasing times T2 ranging from
a few to hundreds of milliseconds have been observed.
These can be extended to T2 � 1 s with dynamical decoupling
[20,34,35,37], with recent demonstrations achieving T2 > 10 s
[86,87]. Conversely, the relaxation time T1 spans between a
few and hundreds of seconds [20,32,34].

As both quantum gates and shuttling over a few lattice
spaces take significantly less time, a few microseconds at
most, we neglect idling errors occurring during gates. On
the other hand, midcircuit measurements require times of the
order of 1–20 ms [15,33–37]. This leads to idling errors during
measurements which cannot be neglected. For the following,
we assume dephasing dominates, as T2 � T1. Therefore, dur-
ing measurements, every data qubit is subject to the channel

Eidle(ρ) = (1 − pidle )ρ + pidleZρZ, (C17)

043253-12



OPTIMIZED MEASUREMENT-FREE AND … PHYSICAL REVIEW RESEARCH 6, 043253 (2024)

10−4 10−3 10−2

p2

10−6

10−5

10−4

10−3

10−2

10−1

p l
og

MF

Bacon-Shor

Shor

Surface

Steane

plog = p2

10−4 10−3 10−2

p2

10−6

10−5

10−4

10−3

10−2

10−1

p l
og

FF

Bacon-Shor

Shor

Surface

Steane

plog = p2

Baco
n-S

hor Sh
or

Su
rfa

ce
Ste

ane

10−3

10−2

p t
h

(a) (b) (c)

FIG. 10. Logical qubit error rate vs physical one, under the simplified noise model for neutral atoms described in Sec. IV B, for the
(a) measurement-free and (b) feed-forward implementations. Solid lines correspond to the numerical fits used to estimate the pseudothresholds,
similar to Fig. 5. (c) Numerical estimates of the pseudothresholds.

with

pidle = 1
2 (1 − e−t/T2 ), (C18)

where t represents the time taken by measurements.
With a feed-forward time of t ≈ 0.9 ms and coherence

T2 > 1 s from state-of-the-art QEC experiments with rubid-
ium atoms [15], pidle � 10−3 was estimated. Very recent
results with arrays of cesium atoms observe a T2 time that is
an order of magnitude larger [87]. With further experimental
improvements, an optimistic scenario for the future would be
t = 0.1 ms and T2 = 50 s, leading to negligible idling rates
(pidle ≈ 10−6).

APPENDIX D: ADDITIONAL NUMERICAL RESULTS

In this Appendix, we report on the numerical simulations
of our protocols under the simplistic noise model derived in
Appendix C for neutral-atom arrays, in the absence of idling
errors. This is shown in Fig. 10.

Results are qualitatively similar to the depolarizing noise
(cf. Sec. IV A), but the pseudothresholds are higher. In
particular, the pseudothreshold of multiple implementations
is found to be within the reach of current state-of-the-art
experiments [15,29], from which one can estimate a p2 in the
range of 0.005–0.007.
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