001033542 001__ 1033542
001033542 005__ 20250701125910.0
001033542 0247_ $$2doi$$a10.1039/D4SE01308E
001033542 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06423
001033542 0247_ $$2WOS$$aWOS:001344579800001
001033542 037__ $$aFZJ-2024-06423
001033542 082__ $$a660
001033542 1001_ $$0P:(DE-Juel1)167513$$aFischer, Benedikt$$b0$$eCorresponding author
001033542 245__ $$aAdvanced atmospheric pressure CVD of a-Si:H using pure and cyclooctane-diluted trisilane as precursors
001033542 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2024
001033542 3367_ $$2DRIVER$$aarticle
001033542 3367_ $$2DataCite$$aOutput Types/Journal article
001033542 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1732787706_22613
001033542 3367_ $$2BibTeX$$aARTICLE
001033542 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001033542 3367_ $$00$$2EndNote$$aJournal Article
001033542 520__ $$aLiquid silanes can be used for low-cost, fast deposition of hydrogenated amorphous silicon (a-Si:H) as an alternative to state-of-the-art deposition processes such as plasma enhanced chemical vapor deposition or electron beam evaporation. However, liquid silane deposition techniques are still in their infancy. In this paper, we present a new version of the atmospheric pressure chemical vapor deposition technique designed to improve the reproducibility of a-Si:H deposition. With this new tool, we explore ways to improve the quality of the material. The films can be prepared using pure trisilane as a precursor; frequently, however, trisilane is diluted with cyclooctane for better handling and process control. Currently, the influence of this dilution on the film quality is not well understood. In our work, we investigate and compare both precursor strategies. This paper presents a comprehensive analysis of the effects of cyclooctane dilution, deposition temperature, process duration, and precursor amount on the structure stoichiometry and electronic properties of the resulting films. The analysis was performed using a range of techniques, including Fourier transform infrared spectroscopy, electronic spin resonance spectroscopy, Raman spectroscopy, ellipsometry, secondary ion mass spectrometry, and conductivity measurements. For films deposited with pure silane, we found a low oxygen (O) and carbon (C) impurity incorporation and an adjustable H content up to 10%, resulting in a photosensitivity of up to 104. Dependent on the dilution and deposition temperature, the films deposited with cyclooctane dilution showed various amounts of C incorporation, culminating in an a-Si:H/a-SiC:H structure for high temperatures and dilutions. High purity a-Si:H films as a-Si:C:H films are promising for application in solar cells and transistors either as an amorphous functional layer or as a precursor for recrystallization processes, e.g., in TOPCon solar cell technology.
001033542 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001033542 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001033542 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001033542 7001_ $$0P:(DE-Juel1)130277$$aNuys, Maurice$$b1
001033542 7001_ $$0P:(DE-Juel1)130212$$aAstakhov, Oleksandr$$b2
001033542 7001_ $$0P:(DE-Juel1)130246$$aHaas, Stefan$$b3
001033542 7001_ $$0P:(DE-Juel1)180816$$aSchaaf, Michael$$b4
001033542 7001_ $$0P:(DE-Juel1)133839$$aBesmehn, Astrid$$b5
001033542 7001_ $$0P:(DE-Juel1)156296$$aJakes, Peter$$b6
001033542 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b7$$ufzj
001033542 7001_ $$0P:(DE-Juel1)130285$$aRau, Uwe$$b8
001033542 773__ $$0PERI:(DE-600)2882651-6$$a10.1039/D4SE01308E$$gVol. 8, no. 23, p. 5568 - 5580$$n23$$p5568 - 5580$$tSustainable energy & fuels$$v8$$x2398-4902$$y2024
001033542 8564_ $$uhttps://juser.fz-juelich.de/record/1033542/files/d4se01308e.pdf$$yOpenAccess
001033542 8767_ $$d2024-11-27$$eHybrid-OA$$jPublish and Read
001033542 909CO $$ooai:juser.fz-juelich.de:1033542$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001033542 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167513$$aForschungszentrum Jülich$$b0$$kFZJ
001033542 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130277$$aForschungszentrum Jülich$$b1$$kFZJ
001033542 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130212$$aForschungszentrum Jülich$$b2$$kFZJ
001033542 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130246$$aForschungszentrum Jülich$$b3$$kFZJ
001033542 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180816$$aForschungszentrum Jülich$$b4$$kFZJ
001033542 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133839$$aForschungszentrum Jülich$$b5$$kFZJ
001033542 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156296$$aForschungszentrum Jülich$$b6$$kFZJ
001033542 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b7$$kFZJ
001033542 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b7$$kRWTH
001033542 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130285$$aForschungszentrum Jülich$$b8$$kFZJ
001033542 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001033542 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001033542 9141_ $$y2024
001033542 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001033542 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001033542 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001033542 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
001033542 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
001033542 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-19
001033542 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-19
001033542 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001033542 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2025-01-01$$wger
001033542 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUSTAIN ENERG FUELS : 2022$$d2025-01-01
001033542 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
001033542 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
001033542 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
001033542 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-01
001033542 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-01
001033542 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
001033542 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSUSTAIN ENERG FUELS : 2022$$d2025-01-01
001033542 9201_ $$0I:(DE-Juel1)IMD-3-20101013$$kIMD-3$$lPhotovoltaik$$x0
001033542 9201_ $$0I:(DE-Juel1)ZEA-1-20090406$$kZEA-1$$lZentralinstitut für Technologie$$x1
001033542 9201_ $$0I:(DE-Juel1)IET-4-20191129$$kIET-4$$lElektrochemische Verfahrenstechnik$$x2
001033542 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x3
001033542 9801_ $$aAPC
001033542 9801_ $$aFullTexts
001033542 980__ $$ajournal
001033542 980__ $$aVDB
001033542 980__ $$aUNRESTRICTED
001033542 980__ $$aI:(DE-Juel1)IMD-3-20101013
001033542 980__ $$aI:(DE-Juel1)ZEA-1-20090406
001033542 980__ $$aI:(DE-Juel1)IET-4-20191129
001033542 980__ $$aI:(DE-Juel1)IET-1-20110218
001033542 980__ $$aAPC
001033542 981__ $$aI:(DE-Juel1)ITE-20250108