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Abstract—Disaggregated memory promises to meet growing
memory requirements of applications while improving system re-
source utilization in high-performance computing (HPC) systems.
Compared to traditional systems—where expensive resources
such as CPUs, GPUs, and memory, are assigned to jobs in
units of nodes—systems with disaggregated memory introduce
memory pools that can be shared among jobs; this introduces
new optimization metrics to the job scheduler. In this paper,
we propose a data-driven approach to evaluate job scheduling
and resource configuration in HPC systems with disaggregated
memory. To incorporate the memory requirements of jobs for
both local and disaggregated memory resources and improve
system efficiency in open-science HPC systems, we introduce a
novel job scheduling algorithm called FM (Fair Memory). Our
simulation results show that FM outperforms commonly-used job
schedulers in terms of jobs’ bounded slowdown when the shared
memory pool capacity is limited, and in terms of fairness under
all conditions.

Index Terms—HPC, Resource Utilization, Disaggregated Mem-
ory, Scheduling Policies

I . INTRODUCTION

Traditionally, high-performance computing (HPC) systems
have been designed with a tightly coupled architecture where
compute and memory resources are bundled together in nodes.
These nodes are statically configured and allocated exclusively
to jobs for a period of time to avoid interference from other
workloads. Therefore, node resources that are not used by
the job assigned to those nodes are left idle. Node sharing
among jobs only partially addresses this challenge and is
typically much constrained in its use, and thus infrequent in
practice. Also, HPC applications have intensely diverse memory
requirements. Thus, combined with today’s static resource
allocation, HPC systems that serve a variety of scientific
applications suffer in their utilization of expensive resources
and face a challenge for efficient resource management [1]–[4].

In recent years, there has been a growing interest in disag-
gregated system architectures to manage memory and compute
resources separately. This enables finer-grained allocation of
resources to more accurately match application requirements.
Disaggregated memory, referred to as remote memory for
simplicity in this paper (in contrast to local memory on the same
node as compute units), does not reduce the workload’s memory
requirements, but rather allows a compute unit to use unused
memory resources on other nodes or in a common memory

pool. However, this approach introduces new challenges, such
as increased and heterogeneous memory access latency due to
the remote location of memory resources, increased pressure
on the network, and the need to allocate local and remote
memory resources to jobs to balance application runtime, cost,
memory utilization, and job queuing time among other goals.
Therefore, job scheduling and allocating memory resources in a
disaggregated system is more complex algorithmically because
of the extra metrics and parameters, such as the physical
location of remote memory modules and interference with
other jobs in memory modules or the network.

While prior research evaluated how assigning remote memory
to a job can affect its performance and explored implementa-
tions of disaggregated memory in HPC [2], [5]–[10], limited
work has been done to either evaluate how the ratio of local and
remote memory capacity affects the system and applications, or
to co-design scheduling policies to balance the often conflicting
goals of application performance and improving system-wide
utilization of memory capacity.

In this paper, we aim to address three fundamental questions
using a data-driven approach on two production HPC systems.
First, in an HPC system equipped with disaggregated memory,
is it helpful for the job scheduler to, in addition to existing
considerations, consider the location and constraints of available
remote memory resources? Second, what method should
determine the ratio of local and remote memory pool capacities
to minimize impact on application and system performance,
and reduce total system memory? Lastly, what advantages does
disaggregated memory bring to HPC systems?

The contributions of this study are summarized below.
• We present an application performance model that quan-

tifies the impact of the additional latency incurred when
accessing remote memory. We use this model to estimate
job performance in a memory-disaggregated system.

• We simulate HPC systems with disaggregated memory
resources using traces collected from two production
systems and evaluate both system and job performance
across various memory configurations.

• We present throughput per dollar spent on memory
resources as an indicator of the cost-benefit ratio for
disaggregated memory systems, and identify the optimal
memory per rack for our two production systems.



• We introduce a remote memory-aware job scheduler, FM
(Fair Memory), which outperforms the next-best state-of-
the-art scheduler by up to 54 % in average bounded job
slowdown. Additionally, FM achieves the highest fairness
among all schedulers compared.

The remainder of the paper is structured as follows. First,
we provide background on memory disaggregation and job
scheduling in HPC systems in Section II. Next, we present our
performance slowdown model in Section III. Then, we describe
our evaluation results in Section IV. Section V summarizes
previous work on scheduling and allocation policies. Finally,
Section VI discusses future directions and concludes this paper.

I I . BACKGROUND

In this section, we discuss two common system architectures
for memory disaggregation and present common scheduling
techniques in HPC systems and their evaluation metrics.

A. Memory Disaggregation Architectures

Disaggregating memory involves separating the allocation of
memory resources from compute resources, allowing for more
flexible allocation and management of the memory resources.
With disaggregated memory, different applications or workloads
can be allocated varying amounts of memory based on their
specific needs, rather than being allocated whatever memory
capacity the application’s allocated nodes contain.

Disaggregating memory in HPC systems can be achieved by
either (i) logically partitioning, either in hardware or software,
the memory capacity of a compute node into two parts, where
the first part is used exclusively by the compute node itself
while the second part can be utilized by remote nodes (either
in the same rack or not) [11]–[13], or (ii) by instantiating a
physically separate pool of network-attached memory while the
compute nodes retain their local memory resources [5], [14].
Figure 1 illustrates an example of the latter architecture. Our
study focuses on this architecture, instead of entirely separating
compute and memory resources in different racks, because this
variation allows for lower access latency to a subset of the
shared memory pool. A noteworthy variation of this scheme
is when compute nodes possess zero private memory capacity,
making them entirely dependent on shared memory. In our
study, all racks have the same configuration; each node has
its own private memory and also shares an on-rack memory
pool (what we refer to as ‘rack-scale’), as well as off-rack
disaggregated memory residing in other racks (referred to as
‘system-scale’).

B. Scheduling in HPC

Today, almost all HPC clusters use queuing systems for
resource management and job scheduling, such as SLURM,
UGE, and PBS Pro [15], [16]. These systems make available
to users several queues with different resource constraints and
priority levels. Within each queue, scheduling policies, such as
first-come, first-served (FCFS), define each job’s priority based
on its characteristics. A job i has the following characteristics:
(i) Submit Time si: the timestamp at which the job was

...

Local Memory Remote Memory Shared Memory Pool

Compute Node

Rack 0

Compute Node

Compute Node

...

Compute Node

Rack 1

Compute Node

Compute Node

...

Compute Node

Rack n

Compute Node

Compute Node

...

Memory Node

Memory Node

Memory Node

Memory Node

Memory Node

Memory Node

Rack Switch Rack Switch Rack Switch

Switch Switch...

Figure 1: One example of providing a shared memory pool by
distributing it across racks.

submitted, (ii) Estimated Duration di: user or system estimated
time to complete the job, and (iii) Nodes ni: the number of
nodes requested. In today’s systems, users usually request
a number of nodes of a particular type, which determines
the number and type of compute units (CPUs or GPUs) and
memory modules based on the configuration of the requested
nodes. Some schedulers also take into account (iv) Memory mi:
the memory requested per CPU/GPU or per node (especially
useful in case jobs are allowed to share nodes), and (v) Waiting
Time wi: the time that a job has been waiting in the queue.
Other characteristics, such as user ID and group ID, may also
be considered in the job’s priority. However, to emphasize job-
specific attributes and simplify analysis, we do not consider
that specific users or groups have a higher priority than others
in this study.

The scheduler’s primary function is to allocate available
resources to jobs in the queue. When there are insufficient
resources to accommodate waiting jobs, jobs remain in queue.
To improve resource utilization during these waiting peri-
ods, backfilling mechanisms are commonly employed. These
mechanisms allow the scheduling of smaller jobs with lower
priority to fill available system slots. The choice of which
job to backfill can be made either by ensuring that no other
waiting job experiences further delays (known as conservative
backfilling) [17] or by not delaying only the job at the queue
head (referred to as EASY backfilling) [18].

Scheduling policies are designed to optimize objective
functions that align with the preferences of an HPC system.
While there is no gold standard for evaluating scheduling
policies, our study employs the following metrics that represent
the goals of most HPC sites: system throughput, compute node
utilization, average bounded slowdown, and fairness.

C. Evaluation Metrics

System Throughput: System throughput in HPC systems
refers to the rate at which a system can process jobs. For a
given time period of T , we count the total number of jobs N
finished during this time and calculate the throughput as:

Throughput =
N

T



Compute Node Utilization: Compute node utilization
measures the percentage of time that compute nodes are actively
processing jobs relative to the total time they are available
for computation. This metric reflects the extent to which the
computational resources within the HPC system are being
effectively utilized. Over a given time period T , we sum the
busy time bi for each node i when it is allocated to jobs, and
calculate the utilization for all nodes C as follows:

Utilization =

∑
i∈C bi

T ∗ C
Average Bounded Slowdown: Slowdown is the ratio of the

time from job submission to completion (wi+di) over the actual
runtime duration (di), i.e., wi+di

di
. To avoid the disproportionate

effect caused by exceptionally short jobs, bounded slowdown
(bsld) is introduced as follows:

bsldi = max

(
wi + di

max(di, τ)
, 1

)
where τ is a predefined lower bound that is typically set to 10
seconds [19]–[21]. Thus, the average bounded slowdown of
N jobs is useful for comparing job performance in terms of
job completion time (w + d) and is defined as:

avg bsld(N) =
1

N

∑
i∈N

max

(
wi + di

max(di, τ)
, 1

)
Fairness: We evaluate the fairness of schedulers by exam-

ining favoritism and discrimination among jobs. Following
the methodology presented in [22], we analyze a stream
of jobs J1, J2, ..., JN using waiting time as the comparison
metric. We calculate the waiting time differences bi for job
i between the scheduler we use as a baseline (FCFS without
backfilling) and the scheduler we evaluate. We categorize the
bi values of all jobs into three distinct sets: (i) positive values
(indicating shorter waiting times under the evaluated scheduler)
are grouped into the benefit group Sb, (ii) jobs experiencing
performance deterioration are grouped into the discrimination
group Sd, and (iii) jobs with no performance change are placed
in the neutral group Sn. We can then calculate the total benefit
B and total discrimination D as:

B =
∑

Ji∈Sb

bi, D =
∑

Ji∈Sd

|bi|

The associated fairness metrics are calculated as follows:
1) Marginal Discrimination (MD): the total discrimination in

excess of the total benefits, calculated as MD = D −B.
2) Extreme Discrimination (Dx): the total discrimination

values for the most discriminated proportion x of the jobs;
for example, D10 and D20 represent the total discrimina-
tion for the top 10 % and 20 % most discriminated jobs,
respectively.

3) Extreme Marginal Discrimination (MDx): similar to
marginal discrimination, calculated for the most bene-
fited/discriminated proportion x of the jobs: MDx =∑

Ji∈Sx
d
|bi| −

∑
Ji∈Sx

b
bi.

The lower these metrics, the less discrimination is exhibited
by the scheduler, indicating better fairness. It is important
to recognize that while prioritizing shorter and/or small-scale
jobs can mitigate system fragmentation and thereby enhance
system throughput and compute node utilization, it often results
in discrimination that is generally undesirable for jobs and
users. Consequently, we incorporate fairness as a supplementary
metric to balance our previous evaluation metrics.

I I I . METHODOLOGY

Memory disaggregation in HPC is an emerging research area,
with no existing HPC systems fully capable of supporting this
feature. Consequently, our study primarily employs simulation-
based methodologies. This section introduces a performance
degradation model to estimate job performance when utilizing
remote memory. We then explain the collection of job traces
from operational HPC systems. Using these traces alongside our
performance degradation model, we simulate job performance
under various remote memory configurations. In addition, we
describe the simulated system configurations and present both
baseline schedulers and our proposed scheduler.

A. Performance Prediction due to Disaggregated Memory

The performance of a job in an HPC system is influenced by
a multitude of factors such as communication patterns, network
congestion, and physical distance between compute tasks.
With disaggregated memory, performance can additionally be
influenced by the increased latency and reduced bandwidth
between compute and memory resources. Previous studies
have demonstrated that hardware that implements memory
disaggregation can satisfy the maximum escape bandwidth
of each memory and compute resource in today’s HPC
systems [23]. That said, as we reduce memory modules to
reduce capacity, we also inevitably reduce available memory
bandwidth. Therefore, a job may need to reserve more memory
modules than strictly necessary for its capacity requirements,
simply to satisfy its memory bandwidth requirements. However,
previous studies showed that high memory bandwidth is
seldom used by HPC jobs within the open-science NERSC
workload [3]. Consequently, the effect of memory latency is
dominant and cannot be avoided due to the longer physical
distance of disaggregated memory [10], [23], [24]. Given
that future memory technologies are expected to offer more
bandwidth per module, thereby mitigating memory bandwidth
concerns, our study focuses primarily on the impact of latency.

In our study, we use job traces from production HPC
systems that include the start and end times of each job. These
traces already encompass factors that affect execution time
for the particular system and conditions at the time each
job initiated. Therefore, for each experiment we configure
our simulated system similarly to the system each trace is
from and build a model for the additional performance penalty
from disaggregation that focuses exclusively on capturing the
performance degradation due to the added latency between
compute and memory resources, a traditionally latency-sensitive
path.
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Figure 2: NUMA node/domain configuration of the two-Socket
Intel Xeon Max 9462 Sapphire Rapids CPU in flat mode with
SNC4 clustering, as used for latency sensitivity testing. This
figure is adapted from Figure 14 in [25].
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Figure 3: Performance slowdown of PARSEC workloads for
different additional latencies between the LLC and the main
memory. The dashed lines are the polynomial functions of
degree 2 generated from the data points of each workload.

1) Sensitivity to Latency: We study the latency sensitivity
of a variety of application kernels by executing the PAR-
SEC3.0 benchmark suite [26] on Sapphire Rapids HBM nodes,
equipped with dual Intel Xeon Max 9462 CPUs configured in
flat mode and employing SNC4 clustering [25], as illustrated
in Figure 2. PARSEC workloads contain a range of compute
kernels and are representative of HPC applications and follow
the trends of a previous study that evaluated two more
application suites [23]. We execute each benchmark in single-
threaded mode to focus on the effect of latency and avoid
memory bandwidth from becoming a bottleneck; our goal is to
measure on hardware, not simulation, the impact of memory
latency on application performance.

To achieve a precise measurement of memory latency, we
utilize the numactl utility to affinitize the execution context
to NUMA domain 0, thereby standardizing the execution core
across all tests. Subsequently, we vary the memory allocation
across the 16 available NUMA domains to assess the latency
impact from the perspective of domain 0. We use the Intel
memory latency checker tool to measure the loaded latency
between domain 0 and the other domains, under conditions
where a single thread is responsible for generating memory
traffic. The x-location of the data points in Figure 3 is the
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remote memory access.

average latency measured across the range of memory traffic a
single thread can generate, with the x-error bars showing the
min/max measurements.

The PARSEC3.0 benchmark suite, with the exception of the
X264 and Facesim workloads that do not execute correctly,
serves as the basis for our experiments. On each NUMA
domain all of the workloads were run three times, with the
median run used for the data point in Figure 3 and the
other runs providing the y-error bar extents. As evident in
the figure, the majority of the workloads within the suite
show minimal sensitivity to variations in latency. However,
a few workloads exhibit significant performance degradation in
response to increased latency. Specifically, the Canneal and the
Streamcluster workloads experience a slowdown of 190 % and
119 %, respectively, when subjected to an additional 190 ns of
latency. The trends and orders of magnitudes of these results
match other previous simulation-based studies, thus increasing
the confidence of our conclusions [23].

The groupings of data points seen in Figure 3 are explained
by the NUMA configuration. As shown in Figure 2, the CPU
cores in each of the two sockets are divided into four groups,
each associated with two NUMA domains, one for DDR
memory and the other for HBM. There are only relatively
small latency differences between NUMA nodes of the same
memory type on the same socket, leading to four groupings
of four points. The latencies on the local socket for the DDR
memory (which has the lowest latency) and the HBM overlap
to give the group of eight data points at the left of the figure;
the HBM on the non-local socket has substantially more latency
at single-thread bandwidths than the DDR memory, giving a
noticeable separation between the two groups of four data
points on the right of the figure.

2) Intra-rack and Inter-rack Latency: In our simulated
HPC system, we assume a Dragonfly network where the
nodes, including the computing and memory nodes within
the same rack, belong to the same Dragonfly group; groups
are interconnected in a fully connected graph. Each compute
node connects through a single switch (i.e., a rack switch)
to reach memory nodes in the same rack and traverses three
switches (i.e., two rack switches and one inter-rack switch) to
access memory nodes in other racks. Additionally, our system
models the Compute Express Link (CXL) interconnect standard
for memory disaggregation [10], [27]. We use the following
latency assumptions for each component in this architecture,
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Figure 5: Bottom: The performance slowdown of PARSEC
workloads for 180 ns and 280 ns of additional LLC memory
latency. Top: The same PARSEC performance slowdowns
presented as CDFs.

adopted from [10]: each CXL port has a latency of 25 ns, each
retimer has 20 ns, the total NoC and arbitration latency on
each switch is 20 ns, the flight time between a CXL port and
a retimer is 5 ns, and the flight time between switches is 30 ns.
Therefore, the additional latencies for intra-rack and inter-rack
remote memory access in our model are 180 ns and 280 ns,
respectively, as depicted in Figure 4.

Drawing upon our latency sensitivity results, we then
construct polynomial functions of degree 2, depicted by dashed
lines in Figure 3. These functions are used to quantify the
performance degradation at additional latencies of 180 ns and
280 ns for HPC workloads. The performance slowdowns are
detailed in the lower section of Figure 5, where the baseline
performance is when using memory on the same NUMA
domain as the executing CPU core. For intra-rack remote
memory access, an added latency of 180 ns leads to an average
performance slowdown of 31 %, with the slowdown ranging
from a minimum of 0.1 % to a maximum of 167 %. In the case
of inter-rack access with an additional 280 ns of latency, the
average performance slowdown is observed to be 53 %, with
variations ranging from 0.75 % to 319 %.

3) System Performance Prediction Model: Because our
system job traces inevitably lack application-specific infor-
mation due to the scale and duration of those traces as well as
privacy concerns, and because PARSEC contains a range of
HPC compute kernels whose trends were confirmed by more
benchmark suites [23] as we mentioned previously, we use
the distribution of our aforementioned PARSEC performance
slowdown results to model the slowdown of jobs in the system
as a function of the additional latency to reach disaggregated
memory. Figure 5 at the bottom shows the performance
slowdown of PARSEC benchmarks for 180 ns and 280 ns and
at the top the corresponding cumulative distribution function
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(CDF) for 180 ns and 280 ns. To capture the variability of job
sensitivity to memory access latency as well as the effectiveness
of latency hiding techniques such as remote memory page
prefetching [13], [28], [29] for different applications, for each
job in our trace, we assign a random value between 0 and 1
to model its performance sensitivity to memory latency. This
value is then transformed into a slowdown factor (denoted as
sld factor) using the aforementioned CDF of the intra-rack
(180 ns) or the inter-rack (280 ns) slowdown, depending on the
disaggregation scope of each experiment.

The performance degradation model discussed above is
based on the impact of additional latency in accessing memory
resources. Fundamentally, the longer physical distance to reach
remote memory makes higher access latency compared to local
memory inevitable. In our simulations, we instantiate compute
nodes that have local memory resources but can also utilize
the shared memory pool. Because our production system traces
cannot possibly capture each job’s memory access patterns, we
model a job’s performance degradation as directly proportional
to the “remote memory ratio” (denoted as rm ratio), calculated
by dividing the amount of remote memory allocated to a job
by its total memory allocation. As expected, a job not utilizing
remote memory (rm ratio = 0) incurs no performance penalty
from memory disaggregation. Conversely, the more a job relies
on remote memory, the greater the performance penalty it
faces. The maximum penalty, occurring when rm ratio = 1,
corresponds to the slowdown predicted by the aforementioned
degradation model of Figure 5. An intermediate value of
rm ratio means the slowdown is only a fraction of Figure 5
because only a fraction of the memory accesses incur the
additional latency to reach remote memory.

Therefore, a job’s runtime on HPC systems with disaggre-
gated memory can be modeled as follows:

original duration ∗ (1 + sld factor ∗ rm ratio)



TABLE I: Simulated system configurations. Perlmutter refers
to CPU nodes whereas JUWELS refers to GPU nodes.

Parameter Perlmutter trace JUWELS trace

Total number of nodes 1536 960
Number of racks 6 20
Number of nodes per rack 256 48
Memory pool per rack (TB) 4, 8, 12, ... 48 2, 4, 6, ... 24

Node memory (GB) 64
Number of warm-up jobs 3000
Baseline scheduling algorithms SJF, FCFS, WFP3, F1, FAIR
Warming up scheduling FCFS without EASY backfilling

Note: The simulated system configurations are simplified and do not
represent the actual configurations of Perlmutter and JUWELS. In
particular, one of the racks in JUWELS has only 24 nodes, but here
we assume them all uniform for ease of simulation.

B. Characteristics of Job Traces

In our study, we collected real job traces from the CPU nodes
in NERSC’s Perlmutter (referred to as the Perlmutter trace) [30]
and the GPU nodes in the JUWELS Booster Module at Jülich
Supercomputing Centre (referred to as the JUWELS trace) [31],
[32]. These job traces were collected from SLURM and include
actual memory usage metrics obtained from LDMS [33] on
Perlmutter and LLview [34], [35] on JUWELS. The job traces
contain the following fields:

1) Submit Time: This refers to the timestamp when a job
enters the system queue. We preserve this field to reflect
the real submission pattern observed in HPC systems.

2) Duration: This is the time it takes a job to complete
once it starts executing. We utilize the aforementioned
performance degradation model to adjust the job’s duration
based on the memory type (local or remote) it is allocated
and the capacity of each type.

3) Number of Nodes: This is the number of nodes exclusively
allocated to a job. We concentrate on node allocation
instead of processor allocation as neither Perlmutter nor
JUWELS currently allow sharing nodes between jobs.
Thus, nodes are exclusively used by one job.

4) Maximum Memory Used: This denotes the maximum
memory used per node across all nodes allocated to a
job. We record the peak memory usage through LDMS or
LLview to accurately reflect the real maximum memory
requirements of jobs.

To ensure that our simulation experiments can be conducted
within a practical time frame while still revealing scheduler
behaviors, we select jobs submitted over three consecutive
days, resulting in a total of 13 930 and 13 844 distinct jobs
for the Perlmutter and JUWELS traces, respectively. Note that,
the Perlmutter trace excludes jobs shorter than 10 minutes in
duration while shorter than 10 minutes jobs are still present in
the JUWELS trace. To speed up the simulation, we reduced
both the job submission time and duration by a factor of 10,
which accelerated the simulation without altering the results.

Figure 6 (bottom) displays the distribution of maximum

TABLE II: List of Scheduling Algorithms.

Scheduler Priority Function Symbol Definitions

SJF −r
r: duration
s: submit time
w: waiting time
n: number of nodes

FCFS −s

WFP3 (w/r)3 ∗ n

F1 log10(r) ∗ n+ 870 ∗ log10(s)

FAIR w/r

memory capacity usage across the traces. The maximum
memory usage per node for each job predominantly falls within
the range of [32, 64) GB for the Perlmutter trace and [0, 32)
GB for the JUWELS trace, which is considerably lower than
the provisioned memory resources of 512 GB per node in both
systems. The lower memory usage in the JUWELS trace is
likely in part explained by the continued presence of jobs
shorter than 10 minutes, as such jobs have less time to reach
higher memory usage. To further analyze the duration of jobs,
we calculate the normalized duration of each job by dividing
its duration by the maximum duration observed across all jobs
in each trace. The results are illustrated in Figure 6 (top).

C. Simulated System Configurations

Table I presents the configurations of the simulated systems.
We note that for JUWELS, the basic building block of the
network is actually a ‘cell’, which for JUWELS Booster are
composed of two physical cabinets; however, for simplicity
we use the term ‘rack’ for both systems. For both systems,
we reduce the node memory capacity from 512 GB to 64 GB
to reduce system cost, compelling jobs with large memory
requirements to utilize remote memory. The shared memory
pool is configured on a per-rack basis. Additionally, we warm
up each system with the first 3 000 submitted jobs, respectively,
using an FCFS scheduling approach (without backfilling). After
this initial stage, we transition to scheduling algorithms that
incorporate EASY backfilling. The warm-up jobs and the jobs
terminated after the start of the last job are removed from
the evaluation to remove the warm-up and cool-down effect,
ensuring that our analysis is based on data collected during
the effective (stable-state) operation phase of each simulated
system.

D. Baseline Scheduling Algorithms

Table II provides a list of scheduling algorithms used as
baselines in our evaluation, explained below:

• SJF (Shortest Job First): Selects and executes the job with
the shortest requested runtime from the queue.

• FCFS (First-Come, First-Served): Prioritizes jobs based on
submission order, giving preference to earlier submissions.

• WFP3: Gives preference to both older and shorter jobs to
prevent starvation of larger jobs [36].

• F1: A state-of-the-art scheduling algorithm developed
through brute-force simulation and nonlinear regression,
aimed at minimizing the average bounded slowdown [37].

• FAIR: Similar to WFP3, it prioritizes older and shorter
jobs but does not consider job scale in its selection criteria.
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(a) Perlmutter average bounded slowdown.
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(b) Perlmutter system throughput.
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(c) Perlmutter compute node utilization.
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(d) JUWELS average bounded slowdown.
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(e) JUWELS system throughput.
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Figure 7: Performance comparison of various job scheduling algorithms for different memory pool capacities. Insets within the
figures zoom in the areas enclosed by dashed rectangles.

For this study, we operate simulated systems in a non-
preemptive mode, where jobs run to completion once they
start executing, and enable EASY backfilling for all policies,
leveraging its straightforward implementation and documented
advantages [18]. We assume that the runtime requested by users
accurately reflects the actual job runtime. This assumption
allows us to focus on the fundamental differences between
scheduling policies without the variability introduced by user-
estimated runtimes, which can be influenced by account
charging policies and upcoming deadlines.

E. FM: Novel Remote-Memory-Aware Job Scheduling

Scheduling algorithms in current HPC systems typically do
not take into account a job’s expected memory requirements.
However, this factor could have a significant impact on job
scheduling in memory-disaggregated systems. In light of this,
we introduce memory overload (denoted as m) as a measure
of each job’s expected remote memory requirement, which is
the memory occupancy beyond that of the local memory in
the job’s requested nodes. Memory overload is defined as 1 if
the local memory on compute nodes is sufficient for the job.
Otherwise, it is calculated as follows:

memory overload =
job max memory

compute node memory capacity

In addition, we introduce a novel heuristic scheduling
algorithm, called FM (Fair Memory), which takes into account
the memory overload factor. The priority function of FM is
defined as follows:

priority =
w

(log10(n) + 1) ∗ r ∗m
It is worth noting that FM behaves identically to FAIR for

jobs that request only one node and do not require remote
memory. For other jobs, FM assigns lower priorities to those
with longer durations, larger compute node requirements,
and excessive memory demands. FM incorporates a job’s

memory requirement (expressed by memory overload m)
into its priority function and tries to reduce memory pool
fragmentation by prioritizing jobs with lower remote memory
capacity requirements, while also considering the job’s waiting
time to avoid starvation.

To illustrate, consider a simplified scenario where all jobs
have identical compute demands and estimated durations
(i.e., consistent values of n and r). Here, a job’s priority
is solely determined by its waiting time w and memory
overload m. Under such conditions, for jobs entering the queue
simultaneously, FM strategically assigns a lower priority to
those requesting greater amounts of remote memory. While
the hypothetical scenario described simplifies the explanation,
it underscores the core logic of FM in prioritizing jobs to
enhance memory pool efficiency. In addition, w in the priority
function gives higher priorities to jobs with longer waiting
times, effectively reducing the starvation of large-scale jobs
and thereby improving fairness.

IV. EXPERIMENTAL RESULTS

A. Performance Comparison of Schedulers

We conduct experiments to compare the performance of
the baseline schedulers and our novel FM scheduler using
rack-scale memory disaggregation with various memory pool
capacity configurations. The shared memory pool in these initial
experiments is only accessible to jobs running on nodes in the
same rack, also referred to as intra-rack disaggregation [3]. The
job placement policy of all these schedulers is to consolidate
the allocated nodes in the same rack as much as possible while
maintaining the load balance among racks, which is a common
policy used in production HPC systems.

1) Average Bounded Slowdown: Figures 7a and 7d provide
a comparative analysis of the job scheduling algorithms in
terms of average bounded slowdown, where—as expected—
the slowdown decreases as memory capacity increases, i.e.,
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Figure 8: Comparison of fairness metrics across different memory pool capacities: Discrimination (D) and Marginal Discrimination
(MD) are shown at the top, while Discrimination (D10) and Marginal Discrimination (MD10) for the 10 % most discriminated
jobs are displayed at the bottom. FM consistently displays the lowest values, indicating it maintains the highest level of fairness
among the jobs.

jobs experience shorter bounded slowdowns and have shorter
response times. Across various memory pool capacity con-
figurations in the Perlmutter trace, FM consistently boasts
the lowest average bounded slowdown that is lower than the
second-best SJF by up to 54 %. In the JUWELS trace, SJF
performs marginally better than FM when the memory pool
capacity reaches 6 TB/rack. However, in both traces, FM has a
noticeably lower average bounded slowdown compared to the
baselines when the memory pool capacity is limited. In such
scenarios, FM delays jobs with excessive memory demands and
prioritizes jobs with lower memory requirements. This approach
allows the shared memory pool to accommodate more jobs,
thereby reducing the waiting time for those preferred jobs.

2) System Throughput: Figures 7b and 7e illustrate system
throughput, measured in jobs per 100 seconds, on the y-axis
against the provisioned memory pool capacity per rack on the
x-axis for the Perlmutter and JUWELS traces, respectively.
Both figures display a similar trend: across all schedulers,
as the memory pool capacity per rack increases, system
throughput rises and eventually plateaus once the memory pool
capacity reaches a certain threshold. This by itself is a valuable
observation for HPC system procurement because it provides a
methodology to determine a cost-effective capacity of system
memory for a given workload. Also, given that the number of
compute nodes remains constant across these experiments, the
correlation between increased system throughput and enhanced
memory pool capacity suggests that memory pool capacity is a
potential bottleneck that hinders job scheduling when limited,
despite the availability of computing nodes.

In terms of system throughput across different schedulers,
when memory capacity is constrained (e.g., at 16 TB/rack
for the Perlmutter trace), the difference in system throughput
among the schedulers is not obvious for the Perlmutter trace.
With such scarce memory capacity and relatively large memory

requirements, schedulers have limited options to show a
significant difference in system throughput. However, this
difference becomes more pronounced for a higher memory
pool capacity. Under such conditions, for the Perlmutter traces,
the FAIR scheduling algorithm achieves the highest system
throughput at 5.5 jobs per 100 seconds, while FCFS records the
lowest at 4.8 jobs per 100 seconds. Similarly, the JUWELS trace
records the lowest system throughput with FCFS. In both traces,
our proposed scheduling algorithm, FM, demonstrates moderate
performance when the memory pool capacity is sufficient.

3) Compute Node Utilization: The compute node utiliza-
tion for the Perlmutter and JUWELS traces is illustrated in
Figures 7c and 7f, respectively. Consistent with the trends
observed in the system throughput analysis, compute node
utilization increases with memory pool capacity and then
plateaus once the memory pool capacity is sufficient. This
further corroborates the previous finding that a limited memory
pool capacity hinders jobs from running, and clearly shows
that low memory capacity causes compute resources to be
underutilized when memory is the scarce resource since jobs
require a certain minimum memory capacity in addition
to compute resources. The performance differences among
schedulers are more obvious in the Perlmutter trace, where more
jobs have longer durations and larger memory requirements
compared to the JUWELS trace. For the Perlmutter trace at
44 TB/rack configuration, FAIR reaches the highest utilization
rate of 95 %, whereas SJF shows the lowest at 91 %. For
the JUWELS trace, FCFS achieves the highest compute node
utilization at 98 %, and F1, although it performs the least
effectively, still manages a utilization rate of 96 %. Among all
these schedulers, FM has moderate performance, similar to the
system throughput analysis.

System performance, characterized by system throughput and
compute node utilization, often conflicts with job performance,
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Figure 9: CDF of bounded slowdown for rack-scale and system-scale memory disaggregation, for sufficient (top) and limited
(bottom) memory pool capacity.

as indicated by the average bounded slowdown. In traces like
Perlmutter’s, which contain more jobs with longer durations
and larger memory requirements, FAIR generally exhibits the
best system performance. In contrast, our proposed scheduler,
FM, diverges from FAIR by assigning lower priority to jobs
with larger memory demands through the memory overload
factor. This approach may delay jobs that could otherwise
alleviate resource fragmentation, thereby potentially hindering
system performance.

4) Fairness: Figure 8 presents a fairness comparison using
the metrics D, MD, D10, and MD10. Since these metrics
evaluate the level of discrimination (decision biases based
on job characteristics) jobs receive from the schedulers, a
lower discrimination value indicates greater fairness. Figure 8a
demonstrates that FCFS exhibits the highest discrimination
for Perlmutter while FM shows the lowest discrimination in
both configurations, according to D and MD metrics. When
considering the discrimination and marginal discrimination of
the 10 % most discriminated jobs, specifically D10 and MD10,
F1 appears less fair in the 32 TB/rack configuration. However,
across both configurations and all four metrics, FM consistently
displays the lowest values, indicating it maintains the highest
level of fairness among the jobs.

We repeat the fairness analysis on the JUWELS trace,
as depicted in Figure 8b. In both memory configurations,
F1 exhibits the highest discrimination levels, whereas FM
consistently shows the lowest for the metrics D, MD, D10,
and MD10.

In summary, for all our evaluations so far and although
scheduler performance varies among different job traces with
distinct characteristics, FM—being the only scheduler that
considers the remote memory property in its algorithm—
consistently exhibits a lower average bounded slowdown when
memory pool capacity is limited. It also shows comparable

average bounded slowdown to other schedulers when memory
pool capacity is sufficient. FM also significantly enhances
the fairness of the scheduler across all configurations and job
traces.

B. Memory Disaggregation Scopes

In the subsequent experiments, we employ FM as the schedul-
ing algorithm for all simulations. We compare the performance
of different memory disaggregation configurations against a
baseline configuration where the systems retain their original
memory setup without utilizing memory disaggregation.

Figure 9 presents the trade-off between system-scale and
rack-scale memory disaggregation. From the figure, we can
observe that when memory pool capacity is limited, such as
16 TB/rack for Perlmutter and 6 TB/rack for JUWELS, rack-
scale memory disaggregation exhibits a shorter tail, indicating
that fewer jobs compared to system-scale disaggregation
experience a significant bounded slowdown. This outcome is
understandable, as rack-scale disaggregation inherently offers
lower access latency to the shared memory pool compared to
cross-rack access, thus reducing performance penalties. When
memory capacity is sufficient, the performance of rack-scale
and system-scale disaggregation is similar, as memory resources
are likely to be available within the same rack, even when
cross-rack memory accessing is an option.

Additionally, it is noteworthy that as available memory is
reduced, the Cumulative Distribution Functions (CDFs) of the
three illustrated lines of Figure 9 become more different. As
previously noted, an insufficient memory pool capacity hinders
the allocation of computing nodes to jobs, resulting in longer
waiting times (i.e. larger bounded slowdown) in the queue for
both rack-scale and system-scale configurations.
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Figure 10: Cost-benefit measured as throughput per memory
cost.

C. Cost Benefits

In this subsection, we analyze the cost versus benefit for
the two HPC systems in our evaluation across various memory
pool capacity configurations. Based on our earlier results in this
paper, we consider rack-scale memory disaggregation for its
lower performance penalty and better tail performance. Since
the number of computing nodes remains unchanged, the cost-
benefit is assessed based on memory expenses. According to
the latest DDR5 prices [38], the average cost per gigabyte
is $4.9. We quantify our evaluation metric by calculating the
throughput (jobs per 100 seconds) per dollar spent on total
memory capacity, which includes both the compute node’s
local memory and the remote memory pool.

Figures 10a and 10b present a detailed analysis of throughput
per memory cost for the Perlmutter and JUWELS traces,
respectively. The x-axis quantifies the memory pool capacity,
while the y-axis measures the throughput per dollar spent on
memory. The baseline, representing the throughput per dollar
with each node configured with 512 GB of local memory, serves
as a reference to gauge the benefits of memory disaggregation.

For the Perlmutter trace, the data clearly shows that as
memory pool capacity increases from 4 TB/rack to 20 TB/rack,
the throughput per dollar rises significantly. The throughput per
dollar remains consistent between 20 TB/rack and 28 TB/rack,
peaking at 28 TB/rack. However, a decline in throughput per
dollar beyond 28 TB/rack indicates a turning point where
additional investment in memory yields diminishing returns.
Compared to the baseline, the maximum throughput per dollar
at 28 TB/rack represents a 2.1× improvement in cost-benefit.

A similar trend is observed in the JUWELS trace, with a
pivotal point at 6 TB/rack. Before this point, increasing invest-
ments in memory significantly boosts throughput per dollar.
However, beyond this point, the throughput per dollar declines
and may even fall below that of the baseline configuration.
The highest throughput per dollar, observed at 6 TB/rack, is
2.3× that of the baseline.

When configuring the systems for optimal cost-benefit,
we can easily calculate the total memory capacity and the
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Figure 11: Comparision of the total memory utilization.

associated costs. For the Perlmutter trace, the baseline total
memory capacity is 768 TB, which can be reduced to 264 TB,
resulting in a savings of 66 % (about 2.5M in US dollars).
Similarly, in the JUWELS trace, the total memory capacity
can be reduced from 480 TB to 180 TB, leading to a savings
of 63 % (about 1.5M in US dollars).

D. Memory Utilization

To further quantify the benefits of disaggregated memory,
we now analyze memory utilization. Figure 11 illustrates the
distribution of total memory utilization with disaggregated
memory compared to the baseline. The lines represent CDFs,
while the histograms depict the utilization percentages divided
into 10 % bins. We conducted simulations with 64 GB of local
node memory and remote memory capacities of 28 TB/rack and
6 TB/rack for the Perlmutter and JUWELS traces, respectively.
These configurations were chosen for their optimal cost-benefit
found previously. Both simulations employed the FM job
scheduling algorithm, with memory resources disaggregated at
the rack-scale.

The figure shows that in non-disaggregated systems, memory
utilization typically ranges from 20–30 % for both traces. In
contrast, memory utilization significantly increases in disaggre-
gated systems, indicating more efficient resource utilization:
utilization shifts to the range of 70–80 % for the Perlmutter
trace and 50–60 % for the JUWELS trace. Consequently, the
average total memory utilization increases dramatically—from
26 % in non-disaggregated systems to 69 % for the Perlmutter
trace, and from 24 % to 54 % for the JUWELS trace.

E. Performance Degradation

Figure 12 displays the distribution of job performance
degradation associated with the use of disaggregated memory
in both the Perlmutter and JUWELS traces. The configurations
for these simulations are identical to those used in the memory
utilization analysis of Section IV-D. The histograms categorize
performance degradations into 5 % bins; the y-axis is log-
scaled to enhance visibility for the lower percentages of large
performance degradations.
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Figure 12: Distribution of job performance degradation.

From the figure, it is evident that the majority of jobs
experience less than 5 % performance degradation—specifically,
88 % in the Perlmutter trace and 89 % in the JUWELS trace.
In both traces, fewer than 0.01 % of jobs experience as much
as 150 % performance degradation. Accordingly, the average
performance degradation is only 4.5 % for the Perlmutter trace
and 4.0 % for the JUWELS trace. This observation means that
in order to significantly improve average slowdown such as
in Figure 7, we only have to provide software or hardware
solutions for a few jobs, such as a set of nodes with high
local memory capacity. Also, while those few jobs may be
important, the vast majority of jobs will be minimally affected
by memory disaggregation.

V. RELATED WORKS

Extensive research has been carried out in HPC job schedul-
ing [21], [36], [37], [39]–[45]. These efforts have primarily
aimed to devise scheduling policies that range from simple
schedulers like FCFS to more intricate and expert-customized
approaches such as WFP3 [36]. Additionally, researchers
have explored various techniques, including integer linear
programming, non-linear algorithms, and neural networks,
to derive novel scheduling policies [37], [39]–[43]. More
recently, there has been a growing interest in leveraging deep
reinforcement learning for job scheduling [21], [44], [45].

In addition to resource scheduling for compute nodes, numer-
ous studies delved into multi-resource scheduling, addressing
various aspects such as scheduling burst buffer resources to
alleviate I/O contention [46], [47] and implementing power-
aware scheduling to optimize node utilization while adhering to
power constraints [48]–[51], among others. However, there has
been a notable scarcity of research on scheduling and resource
allocation within the context of disaggregated memory in HPC
environments. An exception to this is the work by Zacarias et
al. [52], where they extended an existing Slurm simulator to
accommodate disaggregated memory. Their approach involved
the use of a multi-node slowdown model to predict job
performance degradation in scenarios where memory resources
are shared among jobs, particularly in heterogeneous setups
where compute nodes with a large memory capacity provide

shared remote memory. Notably, their research primarily
focused on extending the resource allocation plugin within
Slurm to support remote memory allocation, with limited
exploration into job scheduling algorithms and their potential
impact on overall system performance.

Unlike previous research that primarily addresses traditional
HPC architectures and relies on job attributes from the Standard
Workload Format (SWF) to formulate priority functions, our
study focuses on scheduling in HPC systems featuring memory
disaggregation. We introduce a novel attribute called “memory
overload” to quantify a job’s remote memory requirements.
As demonstrated by our experimental results, our proposed
scheduler (FM) that uses a heuristic priority function and
incorporates the memory overload attribute, can outperform
the state-of-the-art scheduler F1 in terms of average bounded
slowdown and fairness in a memory disaggregated system.

VI. CONCLUSION

In this study, we conducted a comprehensive investigation
of job scheduling in HPC systems that feature memory
disaggregation. We developed a performance degradation
model and used real-world job traces from two production
systems to estimate job runtimes when accessing remote
memory resources. Our findings highlighted the superior
performance of our novel FM scheduling algorithm, particularly
in terms of bounded slowdown and fairness. Additionally, we
explored the performance differences between rack-scale and
system-scale memory disaggregation, revealing that rack-scale
disaggregation reduces maximum job slowdown performance
when memory pool capacity is limited. We also performed a
cost-benefit analysis to determine the most efficient memory
pool capacity configurations. Additional evaluations of memory
utilization and performance degradation highlighted the benefits
and trade-offs of a disaggregated HPC system compared to
today’s non-disaggregated configurations. Our results indicate
substantial savings in memory costs—over 60 %—with minimal
impact on job performance of approximately 4 % on average.
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“LLview v2.2.3-base,” Zenodo, Feb. 2024. [Online]. Available:
https://doi.org/10.5281/zenodo.10221407

[36] W. Tang, Z. Lan, N. Desai, and D. Buettner, “Fault-aware, utility-based
job scheduling on blue, gene/p systems,” in 2009 IEEE International
Conference on Cluster Computing and Workshops. IEEE, 2009, pp.
1–10.

[37] D. Carastan-Santos and R. Y. De Camargo, “Obtaining dynamic schedul-
ing policies with simulation and machine learning,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2017, pp. 1–13.

https://www.intel.com/content/www/us/en/content-details/769060/intel-xeon-cpu-max-series-configuration-and-tuning-guide.html
https://www.intel.com/content/www/us/en/content-details/769060/intel-xeon-cpu-max-series-configuration-and-tuning-guide.html
https://doi.org/10.1145/3297858.3304024
https://doi.org/10.1007/978-3-031-22677-9_1
https://docs.nersc.gov/systems/perlmutter/
https://docs.nersc.gov/systems/perlmutter/
https://doi.org/10.17815/jlsrf-7-183
https://doi.org/10.17815/jlsrf-7-183
https://apps.fz-juelich.de/jsc/hps/juwels/configuration.html#hardware-configuration-of-the-system-name-booster-module
https://apps.fz-juelich.de/jsc/hps/juwels/configuration.html#hardware-configuration-of-the-system-name-booster-module
https://llview.fz-juelich.de
https://doi.org/10.5281/zenodo.10221407


[38] Dramexchange. [Online]. Available: https://www.dramexchange.com/
#memory

[39] E. S. Hou, N. Ansari, and H. Ren, “A genetic algorithm for multiprocessor
scheduling,” IEEE Transactions on Parallel and Distributed systems,
vol. 5, no. 2, pp. 113–120, 1994.

[40] C. A. Floudas and X. Lin, “Mixed integer linear programming in
process scheduling: Modeling, algorithms, and applications,” Annals
of Operations Research, vol. 139, pp. 131–162, 2005.

[41] A. Agarwal, S. Colak, V. S. Jacob, and H. Pirkul, “Heuristics and
augmented neural networks for task scheduling with non-identical
machines,” European Journal of Operational Research, vol. 175, no. 1,
pp. 296–317, 2006.

[42] D. E. Akyol and G. M. Bayhan, “A review on evolution of production
scheduling with neural networks,” Computers & Industrial Engineering,
vol. 53, no. 1, pp. 95–122, 2007.

[43] H. Al-Daoud, I. Al-Azzoni, and D. G. Down, “Power-aware linear
programming based scheduling for heterogeneous computer clusters,”
Future Generation Computer Systems, vol. 28, no. 5, pp. 745–754, 2012.

[44] Y. Fan, Z. Lan, T. Childers, P. Rich, W. Allcock, and M. E. Papka, “Deep
reinforcement agent for scheduling in hpc,” in 2021 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2021,
pp. 807–816.

[45] Q. Wang, H. Zhang, C. Qu, Y. Shen, X. Liu, and J. Li, “Rlschert: an
hpc job scheduler using deep reinforcement learning and remaining time
prediction,” Applied Sciences, vol. 11, no. 20, p. 9448, 2021.

[46] S. Herbein, D. H. Ahn, D. Lipari, T. R. Scogland, M. Stearman,
M. Grondona, J. Garlick, B. Springmeyer, and M. Taufer, “Scalable
i/o-aware job scheduling for burst buffer enabled hpc clusters,” in

Proceedings of the 25th ACM International Symposium on High-
Performance Parallel and Distributed Computing, 2016, pp. 69–80.

[47] Y. Fan, Z. Lan, P. Rich, W. E. Allcock, M. E. Papka, B. Austin, and
D. Paul, “Scheduling beyond cpus for hpc,” in Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed
Computing, 2019, pp. 97–108.

[48] X. Yang, Z. Zhou, S. Wallace, Z. Lan, W. Tang, S. Coghlan, and
M. E. Papka, “Integrating dynamic pricing of electricity into energy
aware scheduling for hpc systems,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, 2013, pp. 1–11.

[49] F. Kaplan, J. Meng, and A. K. Coskun, “Optimizing communication and
cooling costs in hpc data centers via intelligent job allocation,” in 2013
International Green Computing Conference Proceedings. IEEE, 2013,
pp. 1–10.

[50] S. Wallace, X. Yang, V. Vishwanath, W. E. Allcock, S. Coghlan, M. E.
Papka, and Z. Lan, “A data driven scheduling approach for power
management on hpc systems,” in SC’16: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2016, pp. 656–666.

[51] T. Cao, W. Huang, Y. He, and M. Kondo, “Cooling-aware job scheduling
and node allocation for overprovisioned hpc systems,” in 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2017, pp. 728–737.

[52] F. V. Zacarias, P. Carpenter, and V. Petrucci, “Improving hpc system
throughput and response time using memory disaggregation,” in 2021
IEEE 27th International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, 2021, pp. 283–290.

https://www.dramexchange.com/#memory
https://www.dramexchange.com/#memory

	Introduction
	Background
	Memory Disaggregation Architectures
	Scheduling in HPC
	Evaluation Metrics

	Methodology
	Performance Prediction due to Disaggregated Memory
	Sensitivity to Latency
	Intra-rack and Inter-rack Latency
	System Performance Prediction Model

	Characteristics of Job Traces
	Simulated System Configurations
	Baseline Scheduling Algorithms
	FM: Novel Remote-Memory-Aware Job Scheduling

	Experimental Results
	Performance Comparison of Schedulers
	Average Bounded Slowdown
	System Throughput
	Compute Node Utilization
	Fairness

	Memory Disaggregation Scopes
	Cost Benefits
	Memory Utilization
	Performance Degradation

	Related Works
	Conclusion
	References

