001     1033565
005     20250203133222.0
020 _ _ |a 978-3-031-63785-8 (print)
020 _ _ |a 978-3-031-63783-4 (electronic)
024 7 _ |a 10.1007/978-3-031-63783-4_4
|2 doi
024 7 _ |a 0302-9743
|2 ISSN
024 7 _ |a 1611-3349
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-06445
|2 datacite_doi
024 7 _ |a WOS:001279329400004
|2 WOS
037 _ _ |a FZJ-2024-06445
041 _ _ |a English
100 1 _ |a Ouardghi, Abdelouahed
|0 P:(DE-Juel1)194959
|b 0
111 2 _ |a 24th International Conference on Computational Science
|g ICCS2024
|c Malaga
|d 2024-07-02 - 2024-07-04
|w Spain
245 _ _ |a A Backward-Characteristics Monotonicity Preserving Method for Stiff Transport Problems
250 _ _ |a 24th ed
260 _ _ |a Heidelberg
|c 2024
|b Springer
300 _ _ |a 33 - 47
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1736144981_27657
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a Lecture Notes in Computer Science
|v 14838
520 _ _ |a Convection-diffusion problems in highly convective flows can exhibit complicated features such as sharp shocks and shear layers which involve steep gradients in their solutions. As a consequence, developing an efficient computational solver to capture these flow features requires the adjustment of the local scale difference between convection and diffusion terms in the governing equations. In this study, we propose a monotonicity preserving backward characteristics scheme combined with a second-order BDF2-Petrov-Galerkin finite volume method to deal with the multiphysics nature of the problem. Unlike the conventional Eulerian techniques, the two-step backward differentiation procedure is applied along the characteristic curves to obtain a second-order accuracy. Numerical results are presented for several benchmark problems including sediment transport in coastal areas. The obtained results demonstrate the ability of the new algorithm to accurately maintain the shape of the computed solutions in the presence of sharp gradients and shocks.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef Book Series, Journals: juser.fz-juelich.de
700 1 _ |a asmouh, ilham
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
770 _ _ |z 978-3-031-63785-8=978-3-031-63783-4
773 _ _ |a 10.1007/978-3-031-63783-4_4
|0 PERI:(DE-600)2018930-8
|y 2024
|x 0302-9743
856 4 _ |u https://link.springer.com/chapter/10.1007/978-3-031-63783-4_4
856 4 _ |u https://juser.fz-juelich.de/record/1033565/files/978-3-031-63783-4_4.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1033565
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194959
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21