001     1033583
005     20251217202222.0
024 7 _ |a 10.34734/FZJ-2024-06463
|2 datacite_doi
037 _ _ |a FZJ-2024-06463
041 _ _ |a English
100 1 _ |a Cao, Zhuo
|0 P:(DE-Juel1)199019
|b 0
|u fzj
245 _ _ |a Galaxy Morphology Classification with Counterfactual Explanation
260 _ _ |c 2024
336 7 _ |a Text
|2 DataCite
336 7 _ |a Minutes
|b minutes
|m minutes
|0 PUB:(DE-HGF)20
|s 1765959395_26386
|2 PUB:(DE-HGF)
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a OTHER
|2 ORCID
336 7 _ |a Other
|2 DINI
336 7 _ |a Personal Communication
|0 4
|2 EndNote
520 _ _ |a Galaxy morphologies play an essential role in the study of the evolution of galaxies. The determination of morphologies is laborious for a large amount of data giving rise to machine learning-based approaches. Unfortunately, most of these approaches offer no insight into how the model works and make the results difficult to understand and explain. We here propose to extend a classical encoder-decoder architecture with invertible flow, allowing us to not only obtain a good predictive performance but also provide additional information about the decision process with counterfactual explanations.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
650 2 7 |a Others
|0 V:(DE-MLZ)SciArea-250
|2 V:(DE-HGF)
|x 0
700 1 _ |a Krieger, Lena
|0 P:(DE-Juel1)196726
|b 1
|u fzj
700 1 _ |a Scharr, Hanno
|0 P:(DE-Juel1)129394
|b 2
|u fzj
700 1 _ |a Assent, Ira
|0 P:(DE-Juel1)188313
|b 3
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/1033583/files/Counterfactuals_Galaxy_JUSER.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1033583
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)199019
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)196726
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129394
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)188313
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)IAS-8-20210421
|k IAS-8
|l Datenanalyse und Maschinenlernen
|x 0
980 1 _ |a FullTexts
980 _ _ |a minutes
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-8-20210421


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21