001033598 001__ 1033598
001033598 005__ 20250203133222.0
001033598 0247_ $$2doi$$a10.1149/1945-7111/ad92dd
001033598 0247_ $$2ISSN$$a0013-4651
001033598 0247_ $$2ISSN$$a0096-4743
001033598 0247_ $$2ISSN$$a0096-4786
001033598 0247_ $$2ISSN$$a1945-6859
001033598 0247_ $$2ISSN$$a1945-7111
001033598 0247_ $$2ISSN$$a2156-7395
001033598 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06478
001033598 0247_ $$2WOS$$aWOS:001364651400001
001033598 037__ $$aFZJ-2024-06478
001033598 082__ $$a660
001033598 1001_ $$0P:(DE-Juel1)190784$$aAli, Haider Adel Ali$$b0
001033598 245__ $$aA Hybrid Electrochemical Multi-Particle Model for Li-ion Batteries
001033598 260__ $$aBristol$$bIOP Publishing$$c2024
001033598 3367_ $$2DRIVER$$aarticle
001033598 3367_ $$2DataCite$$aOutput Types/Journal article
001033598 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1732705456_30973
001033598 3367_ $$2BibTeX$$aARTICLE
001033598 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001033598 3367_ $$00$$2EndNote$$aJournal Article
001033598 520__ $$aPhysics-based models have proven to be effective tools for predicting the electrochemical behavior of Li-ion batteries. Among the various physics-based models, the Doyle-Fuller-Newman (DFN) model has emerged as the most widely employed. In response to certain limitations of the DFN model, the multiple particle-Doyle-Fuller-Newman (MP-DFN) model was introduced. The MP-DFN model utilizes multiple electrode particle sizes, addressing internal concentration heterogeneities and more realistically simulate diffusion processes in the electrodes. However, the model requires relatively high computational cost. This work introduces the Padé approximation for the MP-DFN model, resulting in the simplified MP-DFN model, leading to a faster simulation time. However, depending on battery design and operation conditions, this solution shows to have lower accuracy compared to the MP-DFN. To overcome these challenges, this study also introduces a hybrid MP-DFN model. This model uses a novel approach aimed at striking a balance between accuracy and computational speed. The hybrid MP-DFN model integrates both the finite difference method (FDM) and Padé approximation to effectively address the challenges posed by multiple particle sizes within the electrodes. The choice between FDM or the approximations for a specific particle in the electrode is determined by the scaled diffusion length.
001033598 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001033598 536__ $$0G:(DE-Juel1)BMBF-03SF0628$$aLLEC::VxG - Integration von "Vehicle-to-grid" (BMBF-03SF0628)$$cBMBF-03SF0628$$x1
001033598 536__ $$0G:(BMBF)13XP0530B$$aBMBF 13XP0530B - ALIBES: Aluminium-Ionen Batterie für Stationäre Energiespeicher (13XP0530B)$$c13XP0530B$$x2
001033598 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001033598 7001_ $$0P:(DE-Juel1)176196$$aRaijmakers, Luc$$b1
001033598 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b2
001033598 7001_ $$0P:(DE-Juel1)173719$$aDanilov, Dmitri$$b3
001033598 7001_ $$0P:(DE-Juel1)165918$$aNotten, Peter H. L.$$b4
001033598 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b5$$ufzj
001033598 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/1945-7111/ad92dd$$p110523$$tJournal of the Electrochemical Society$$v171$$x0013-4651$$y2024
001033598 8564_ $$uhttps://juser.fz-juelich.de/record/1033598/files/Ali_2024_J._Electrochem._Soc._171_110523.pdf$$yOpenAccess
001033598 909CO $$ooai:juser.fz-juelich.de:1033598$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001033598 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190784$$aForschungszentrum Jülich$$b0$$kFZJ
001033598 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176196$$aForschungszentrum Jülich$$b1$$kFZJ
001033598 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b2$$kFZJ
001033598 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173719$$aForschungszentrum Jülich$$b3$$kFZJ
001033598 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165918$$aForschungszentrum Jülich$$b4$$kFZJ
001033598 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b5$$kFZJ
001033598 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b5$$kRWTH
001033598 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001033598 9141_ $$y2024
001033598 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001033598 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-22
001033598 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001033598 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-22
001033598 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001033598 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001033598 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001033598 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
001033598 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-02
001033598 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001033598 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2022$$d2025-01-02
001033598 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-02
001033598 920__ $$lyes
001033598 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001033598 980__ $$ajournal
001033598 980__ $$aVDB
001033598 980__ $$aUNRESTRICTED
001033598 980__ $$aI:(DE-Juel1)IET-1-20110218
001033598 9801_ $$aFullTexts