001     1033598
005     20250203133222.0
024 7 _ |a 10.1149/1945-7111/ad92dd
|2 doi
024 7 _ |a 0013-4651
|2 ISSN
024 7 _ |a 0096-4743
|2 ISSN
024 7 _ |a 0096-4786
|2 ISSN
024 7 _ |a 1945-6859
|2 ISSN
024 7 _ |a 1945-7111
|2 ISSN
024 7 _ |a 2156-7395
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-06478
|2 datacite_doi
024 7 _ |a WOS:001364651400001
|2 WOS
037 _ _ |a FZJ-2024-06478
082 _ _ |a 660
100 1 _ |a Ali, Haider Adel Ali
|0 P:(DE-Juel1)190784
|b 0
245 _ _ |a A Hybrid Electrochemical Multi-Particle Model for Li-ion Batteries
260 _ _ |a Bristol
|c 2024
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1732705456_30973
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Physics-based models have proven to be effective tools for predicting the electrochemical behavior of Li-ion batteries. Among the various physics-based models, the Doyle-Fuller-Newman (DFN) model has emerged as the most widely employed. In response to certain limitations of the DFN model, the multiple particle-Doyle-Fuller-Newman (MP-DFN) model was introduced. The MP-DFN model utilizes multiple electrode particle sizes, addressing internal concentration heterogeneities and more realistically simulate diffusion processes in the electrodes. However, the model requires relatively high computational cost. This work introduces the Padé approximation for the MP-DFN model, resulting in the simplified MP-DFN model, leading to a faster simulation time. However, depending on battery design and operation conditions, this solution shows to have lower accuracy compared to the MP-DFN. To overcome these challenges, this study also introduces a hybrid MP-DFN model. This model uses a novel approach aimed at striking a balance between accuracy and computational speed. The hybrid MP-DFN model integrates both the finite difference method (FDM) and Padé approximation to effectively address the challenges posed by multiple particle sizes within the electrodes. The choice between FDM or the approximations for a specific particle in the electrode is determined by the scaled diffusion length.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a LLEC::VxG - Integration von "Vehicle-to-grid" (BMBF-03SF0628)
|0 G:(DE-Juel1)BMBF-03SF0628
|c BMBF-03SF0628
|x 1
536 _ _ |a BMBF 13XP0530B - ALIBES: Aluminium-Ionen Batterie für Stationäre Energiespeicher (13XP0530B)
|0 G:(BMBF)13XP0530B
|c 13XP0530B
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Raijmakers, Luc
|0 P:(DE-Juel1)176196
|b 1
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 2
700 1 _ |a Danilov, Dmitri
|0 P:(DE-Juel1)173719
|b 3
700 1 _ |a Notten, Peter H. L.
|0 P:(DE-Juel1)165918
|b 4
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 5
|u fzj
773 _ _ |a 10.1149/1945-7111/ad92dd
|0 PERI:(DE-600)2002179-3
|p 110523
|t Journal of the Electrochemical Society
|v 171
|y 2024
|x 0013-4651
856 4 _ |u https://juser.fz-juelich.de/record/1033598/files/Ali_2024_J._Electrochem._Soc._171_110523.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1033598
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176196
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)173719
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165918
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ELECTROCHEM SOC : 2022
|d 2025-01-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21