001033617 001__ 1033617
001033617 005__ 20250203215419.0
001033617 0247_ $$2doi$$a10.31219/osf.io/67zxe
001033617 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06497
001033617 037__ $$aFZJ-2024-06497
001033617 1001_ $$0P:(DE-Juel1)178611$$aJung, Kyesam$$b0
001033617 245__ $$aEffective workflow from multi-modal MRI data to model-based prediction
001033617 260__ $$c2024
001033617 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1738563586_21854
001033617 3367_ $$2ORCID$$aWORKING_PAPER
001033617 3367_ $$028$$2EndNote$$aElectronic Article
001033617 3367_ $$2DRIVER$$apreprint
001033617 3367_ $$2BibTeX$$aARTICLE
001033617 3367_ $$2DataCite$$aOutput Types/Working Paper
001033617 520__ $$aPredicting human behavior from neuroimaging data remains a complex challenge in neuroscience. To address this, we propose a systematic and multi-faceted framework that incorporates a model-based workflow using dynamical brain models. This approach utilizes multi-modal MRI data for brain modeling and applies the optimized modeling outcome to machine learning. We demonstrate the performance of such an approach through several examples such as sex classification and prediction of cognition or personality traits. We in particular show that incorporating the simulated data into machine learning can significantly improve the prediction performance compared to using empirical features alone. These results suggest considering the output of the dynamical brain models as an additional neuroimaging data modality that complements empirical data by capturing brain features that are difficult to measure directly. The discussed model-based workflow can offer a promising avenue for investigating and understanding inter-individual variability in brain-behavior relationships and enhancing prediction performance in neuroimaging research.
001033617 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001033617 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
001033617 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
001033617 536__ $$0G:(EU-Grant)826421$$aVirtualBrainCloud - Personalized Recommendations for Neurodegenerative Disease (826421)$$c826421$$fH2020-SC1-DTH-2018-1$$x3
001033617 536__ $$0G:(GEPRIS)491111487$$aDFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2025 - 2027 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x4
001033617 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x5
001033617 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x6
001033617 588__ $$aDataset connected to CrossRef
001033617 7001_ $$0P:(DE-Juel1)178756$$aWischnewski, Kevin J.$$b1
001033617 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B$$b2
001033617 7001_ $$0P:(DE-Juel1)131880$$aPopovych, Oleksandr V.$$b3$$eCorresponding author
001033617 773__ $$a10.31219/osf.io/67zxe
001033617 8564_ $$uhttps://juser.fz-juelich.de/record/1033617/files/manuscript.pdf$$yOpenAccess
001033617 909CO $$ooai:juser.fz-juelich.de:1033617$$popenaire$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access
001033617 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178611$$aForschungszentrum Jülich$$b0$$kFZJ
001033617 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178756$$aForschungszentrum Jülich$$b1$$kFZJ
001033617 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)178756$$aHHU Düsseldorf$$b1
001033617 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b2$$kFZJ
001033617 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$aHHU Düsseldorf$$b2
001033617 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131880$$aForschungszentrum Jülich$$b3$$kFZJ
001033617 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001033617 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001033617 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x2
001033617 9141_ $$y2024
001033617 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001033617 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001033617 980__ $$apreprint
001033617 980__ $$aVDB
001033617 980__ $$aI:(DE-Juel1)INM-7-20090406
001033617 980__ $$aUNRESTRICTED
001033617 9801_ $$aFullTexts