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Abstract 13 

Predicting human behavior from neuroimaging data remains a complex challenge in neuroscience. To 14 
address this, we propose a systematic and multi-faceted framework that incorporates a model-based 15 
workflow using dynamical brain models. This approach utilizes multi-modal MRI data for brain 16 
modeling and applies the optimized modeling outcome to machine learning. We demonstrate the 17 
performance of such an approach through several examples such as sex classification and prediction 18 
of cognition or personality traits. We in particular show that incorporating the simulated data into 19 
machine learning can significantly improve the prediction performance compared to using empirical 20 
features alone. These results suggest considering the output of the dynamical brain models as an 21 
additional neuroimaging data modality that complements empirical data by capturing brain features 22 
that are difficult to measure directly. The discussed model-based workflow can offer a promising 23 
avenue for investigating and understanding inter-individual variability in brain-behavior relationships 24 
and enhancing prediction performance in neuroimaging research. 25 

1 Introduction 26 

Since the concept of the human connectome (Sporns et al., 2005) was proposed almost two decades 27 
ago, whole-brain connectivity derived from neuroimaging data has been employed to address 28 
questions across various topics including cognitive functions (Sporns, 2014) and brain disorders 29 
(Fornito et al., 2015). An important characteristic of magnetic resonance imaging (MRI) data is their 30 
multi-modality that has enabled the researchers to view the brain connectivity from multiple 31 
perspectives of structural and functional connections between brain regions (Park and Friston, 2013). 32 
For instance, diffusion-weighted MRI (dwMRI) can be used to investigate the microstructure of 33 
white matter as well as to estimate axonal fibers connecting brain regions via tracking streamlines. 34 
The latter are interpreted as anatomical connectivity and also referred to as structural connectivity 35 
(SC) (Wiegell et al., 2000). On the other hand, resting-state functional MRI (rsfMRI) provides a way 36 
to obtain the degree of similarity of activity patterns between brain regions over time, representing 37 
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functional connectivity (FC) (Biswal et al., 1995). These two connectivities (SC and FC), constructed 38 
in different ways, evidently have different meanings and interpretations and, accordingly, can be 39 
utilized in several ways. For example, temporal changes of brain activity will be represented in FC 40 
(Schaefer et al., 2018; Tavor et al., 2016), while anatomical white matter changes in long-term 41 
periods can be revealed through SC (Damoiseaux, 2017; Zhao et al., 2015). Furthermore, comparing 42 
these connectomes and calculating their similarity led to the notion of the brain structure-function 43 
relationship as a possible methodological approach to explore the interdependence between structure 44 
and function of the human brain (Suarez et al., 2020). However, the strength of the structure-function 45 
relationship is usually relatively low, might depend on many factors including brain parcellation into 46 
separate regions, and its mechanism is still unclear (Batista-Garcia-Ramo and Fernandez-Verdecia, 47 
2018; Messe, 2020). 48 

Integration of model-based approaches into whole-brain connectome research can expand the scope 49 
of investigation to understand the brain. The models can, for example, be used to generate simulated 50 
FC that together with the fitted model parameters can serve as an additional data modality. This 51 
approach provides further attributes that characterize brain dynamics in great detail (Popovych et al., 52 
2019). In the framework of the whole-brain dynamical modeling, the models were suggested as a 53 
possible mediator between brain structure and function, where the empirical SC and FC are used for 54 
the model derivation and validation (Honey et al., 2009). A natural output of such models is the 55 
relationship between simulated and empirical connectomes, which can in particular be used for 56 
investigation of the brain structure-function relationship. One of the main advantages of a model-57 
based approach is a great freedom of considering many in silico models, ranges of their parameters 58 
and the respective brain activity that may be hidden in a few in vivo measurements (Pathak et al., 59 
2022). The modeling results may thus contain the information going well beyond that of empirical 60 
data and can also validate the biophysical properties of the brain that have been discovered so far or 61 
even provide new insights (Havlicek et al., 2015). In addition, with increased power of high-62 
performance computational clusters, a variety of experimental and data-processing conditions can be 63 
simulated including modeling of virtual brain interventions in order to identify and test the optimal 64 
conditions and parameters, which is hardly possible in vivo (Jirsa et al., 2023; Jung et al., 2024). 65 

In this report we suggest a framework that advances the applicability of the model-based approach 66 
for neuroimaging research and outline an effective workflow for applying simulated data to machine-67 
learning analysis (Figure 1). With the suggested framework, we illustrate a few examples of model-68 
based machine learning applied to classification and prediction by employing simulated data that is 69 
beneficial for the performance compared to using solely empirical neuroimaging data. We consider 70 
connectome relationships as features for predictions. Purely empirical connectome relationship 71 
(empirical SC vs. empirical FC) is used as empirical feature and simulated connectome relationship 72 
(empirical FC vs. simulated FC) is used as simulated feature which involves simulated data. We then 73 
compare the cases of using empirical features, simulated features, and their combination. Such an 74 
enhancement of model applicability might be of relevance, for example, in medical research, where 75 
the classification of subjects into patients and healthy individuals might be well assisted by models 76 
(Jung et al., 2023). 77 

The simulated and empirical connectome relationships exhibit weak similarity between each other 78 
with low or even negative correlations across individuals (Popovych et al., 2021). This indicates that 79 
the simulated data showing stronger relationships might contain additional and possibly useful 80 
information for the machine-learning prediction analysis if included as features. Along this line, we 81 
recently reported that model-based simulated connectomes show higher correlation with clinical 82 
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scores than that of empirical connectomes, thereby outperforming the latter in this respect (Jung et 83 
al., 2024).  84 

Including simulated data as an additional data modality in the mentioned studies was motivated by 85 
several previous results demonstrating distinct properties of simulated and empirical data in spite of 86 
the fact that the models were fitted to the latter. One of the important issues in brain MRI research is 87 
the low reliability of findings. This problem has particularly been brought up in the resting-state 88 
functional imaging of the whole-brain connectome (Andellini et al., 2015). However, model-based 89 
connectome relationships can offer relatively good reliability and improved subject specificity 90 
compared to a fair reliability and low specificity of empirical functional data (Domhof et al., 2022a). 91 
Enhanced data reliability might also be important for the prediction analysis (Chen et al., 2023). 92 
Therefore, applying model-based simulated connectome features, which exhibit distinct patterns 93 
along with enhanced reliability and inter-subject variability, to machine learning could lead to 94 
consistent results and potentially improved prediction performance as we illustrate in a few examples 95 
in this study. 96 

2 Methods 97 

In the suggested workflow (Figure 1), the first step of the model-based approach required multi-98 
modal MRI data, including T1-weighted, dwMRI, and rsfMRI scans. The second step involved 99 
processing the MRI data, which included inhomogeneous field/motion corrections, tissue 100 
segmentation, cortical rendering, and image registration. In the next step, we applied brain 101 
parcellation schemes and computed the whole-brain connectome, including both SC and FC. The 102 
fourth step consisted of selecting a dynamical model for the research objectives and optimizing 103 

Figure 1 A workflow for model-based prediction research. It can be divided into five steps. The first 
step is the acquisition of multi-modal MRI data (T1-weighted, diffusion-weighted, and resting-state 
functional MRI). The second step is preprocessing the acquired MRI data, which can be used for 
neuroimaging analysis. The third step is to calculate whole-brain tractography and apply a brain 
parcellation to reconstruct the whole-brain structural and functional connectomes. The fourth step 
involves whole-brain dynamical modeling including parameter optimization, where the optimal 
whole-brain model is identified and used to simulate and investigate the brain dynamics in silico. The 
final step is applying the simulated data for machine-learning analyses. 
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model parameters by fitting simulated data to empirical data. Finally, machine learning was 104 
performed using features derived from both the measured and model-based data. We utilized 105 
empirical human connectomes, i.e., SC derived from the white-matter fiber tracking and FC 106 
calculated by Pearson's correlation between resting-state Blood Oxygenation Level-Dependent 107 
(BOLD) signals of parcellated brain regions. Subsequently, simulated BOLD signals were generated 108 
via the considered whole-brain model informed by empirical neuroimaging data and validated by 109 
parameter optimization, where the model showed the highest similarity, i.e., Goodness-of-Fit (GoF) 110 
between simulated and empirical FCs, and GoF is considered as simulated features which involved 111 
simulated data. Then the connectome relationships between empirical and simulated brain 112 
connectomes were calculated by Pearson's correlation between empirical SC (eSC), empirical FC 113 
(eFC) and simulated FC (sFC). These connectome relationships were considered as brain features 114 
and utilized by machine-learning techniques for prediction of behavioral characteristics of individual 115 
subjects, for instance, sex classification or prediction of cognitive scores and five personality traits. 116 
The subsections below describe details of each step in the workflow. 117 

2.1 Multi-modal MRI data: Step 1 118 

The current study used the Human Connectome Project (HCP) S1200 young adult dataset (Van Essen 119 
et al., 2013) including 270 unrelated subjects of 142 females and 128 males with ages in 28.5 ± 3.5 120 
(mean ± standard deviation) years. HCP data were acquired using MRI protocols approved by the 121 
Washington University institutional review board (IRB #20124036). Informed consent was obtained 122 
from all subjects. Anonymized data are publicly available (https://db.humanconnectome.org). Multi-123 
modal MRI data including T1-weighted MRI (T1w), rsfMRI, and dwMRI were used in the current 124 
workflow. 125 

2.2 MRI processing: Step 2 126 

A pipeline of MRI processing that consists of structural and functional modules was applied to the 127 
multi-modal MRI data, i.e., T1w, rsfMRI, and dwMRI. The pipeline is available via a public 128 
repository (https://jugit.fz-juelich.de/inm7/public/vbc-mri-pipeline). The pipeline uses functions in 129 
AFNI (Cox, 1996), ANTs (Tustison et al., 2010), FreeSurfer (Dale et al., 1999), FSL (Smith et al., 130 
2004), MRtrix3 (Tournier et al., 2019), and Connectome Workbench (Marcus et al., 2011). The 131 
entire MRI pipeline was aiming at obtaining the whole-brain human connectome. The Schaefer atlas 132 
with 100 parcels (Schaefer et al., 2018) and the Harvard-Oxford atlas with 96 parcels (Desikan et al., 133 
2006) were utilized in this study for brain parcellation in the MNI space. 134 

Resting-state BOLD signals were extracted from the rsfMRI processed with FMRIB's ICA-based X- 135 
noiseifier (ICA-FIX) provided by a pipeline of the HCP repository (Griffanti et al., 2014). There 136 
were four rsfMRI sessions (1200 volumes, TR = 720 ms) conducted over two different days and 137 
consisting of two different phase-encoding directions on each day. In order to obtain the mean 138 
regional BOLD signals, the brain was parcellated according to a given brain atlas, and the voxel-wise 139 
BOLD signals in every brain region were averaged over all voxels of the region at each time point. A 140 
concatenated BOLD signal was then generated by combining all four z-scored BOLD signals from 141 
the four rsfMRI sessions. 142 

For the whole-brain tractography (WBT) calculation, response functions were estimated for spherical 143 
deconvolution using the constrained deconvolution algorithm (Tournier et al., 2007). Fiber oriented 144 
distributions (FODs) were estimated from the dwMRI using spherical deconvolution (Jeurissen et al., 145 
2014), and WBT including 10 million streamlines was created through the fiber tracking by second-146 
order integration over the FOD by a probabilistic algorithm (Tournier et al., 2010). 147 

https://db.humanconnectome.org/
https://jugit.fz-juelich.de/inm7/public/vbc-mri-pipeline
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2.3 Whole-brain connectome: Step 3 148 

For eFC, Pearson's correlation coefficients between the concatenated regional BOLD signals of each 149 
pair of brain regions of the considered brain parcellation were calculated, resulting in the whole-brain 150 
resting-state FC. For eSC, the atlases were transformed from the MNI space to the native space of 151 
dwMRI. Following the transformation, labeled voxels masked within gray matter were selected for 152 
seed and target regions and applied to the WBT. Subsequently, streamlines connecting the seed and 153 
target regions were selected for each pair of brain regions, and we ultimately obtained the whole-154 
brain SC matrices including streamline counts and average path lengths of them. With eFC and eSC, 155 
we can apply connectome and graph-theoretical network properties for further analyses. 156 

2.4 Mathematical whole-brain model and model fitting: Step 4 157 

We simulated a whole-brain dynamical model of 𝑁 coupled phase oscillators (Kuramoto, 1984; 158 
Yeung and Strogatz, 1999). Their temporal dynamics can be described by the following set of 159 
differential equations: 160 

�̇�!(𝑡) = 2𝜋𝑓! +
"
#
∑ 𝑘!$ sin 1𝜑$2𝑡 − 𝜏!$5 − 𝜑!(𝑡)6#
$%& + 𝜎𝜂! , 𝑖 = 1,2,⋯ ,𝑁. (1) 161 

The number of oscillators 𝑁 corresponds to the number of brain regions as defined by a given brain 162 
atlas, where 𝜑!(𝑡) models the phase of the mean BOLD signal of the corresponding region, and the 163 
simulated BOLD was calculated as sin𝜑!(𝑡). 𝐶 is a global coupling which scales the level of 164 
couplings of the whole-brain network. 𝜂! 	is an independent noise perturbing oscillator 𝑖, which is 165 
sampled from a random uniform distribution from the interval [-1,1]. 𝜎 = 0.3 denotes the noise 166 
intensity. The natural frequencies 𝑓! were estimated from the empirical data as frequencies of the 167 
maximal spectral peaks (restricted to the frequency range from 0.01 Hz to 0.1 Hz) of the empirical 168 
BOLD signals of the corresponding brain regions. 𝑘!$ 	stands for the coupling strength between 169 
oscillators 𝑖 and	𝑗, and 𝜏!$ approximates the time delay of the signal propagation between oscillators 𝑖 170 
and	𝑗. They were calculated from the streamline counts and average path-length matrices and 171 
determined by the following equations: 172 

𝑘!$ =
'!"
〈)〉

, (2) 173 

where 𝑤!$ is the number of streamlines between the 𝑖+, and 𝑗+, parceled region and 〈𝑊〉 is an 174 
average number of streamlines over all connections except self-connections. The delays we 175 
calculated as 176 

𝜏!$ =
-!"
〈.〉
= 𝜏𝐿!$, (3) 177 

where 𝐿!$ is the average path length of the selected streamlines connecting the 𝑖+, and 𝑗+, region, and 178 
𝜏 is a global delay, which is a reciprocal of an average speed of signal propagation 〈𝑉〉 through the 179 
whole-brain network. The time step of the numerical integration of Eq. 1 by the stochastic Heun 180 
method was fixed to 0.04 s, and the simulated signals were generated for 3500 seconds after skipping 181 
500 seconds of the initial transient. The simulated BOLD signals and the corresponding sFC matrices 182 
were calculated from the phases down-sampled to TR = 0.72 s, which is the repetition time of the 183 
current rsfMRI acquisition. 184 
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The considered mathematical model (Eq. 1) has two global parameters: global coupling 𝐶 and global 185 
delay 𝜏. These were optimized within the ranges 𝐶 ∈ [0,1] and 𝜏 ∈ [0,100] with the aim to maximize 186 
Pearson's correlation between eFC and sFC. We will refer to this setting with two free parameters as 187 
the low-dimensional parameter optimization. Further, we also considered the model fitting in high-188 
dimensional spaces of model parameters, where the noise intensity 𝜎 and additional local (regional) 189 
parameters of natural frequencies 𝑓! (see Eq. 1) of the brain regions were included in the optimization 190 
process. For both scenarios, we applied the Covariance Matrix Adaptation Evolution Strategy 191 
(CMAES) for parameter optimization (Hansen and Ostermeier, 1996; Hansen and Ostermeier, 2001). 192 
At the parameter optimization by CMAES, the number of particles sampled per generation was 193 
chosen as 𝜆 = 24 based on the previous study (Wischnewski et al., 2022). To account for a possible 194 
result variability of such a parameter optimization, we performed CMAES 30 times for every subject 195 
with different initial conditions and selected the optimal model parameters corresponding to the 196 
largest GoF for further analyses. 197 

2.5 Machine learning for model-based prediction: Step 5 198 

To illustrate the benefits in machine learning via including simulated data into the features, we used 199 
the empirical connectome relationship (Pearson's correlation between eFC and eSC) and the 200 
simulated connectome relationship (Pearson's correlation between eFC and sFC, that is the best GoF 201 
of the model to eFC). The empirical and simulated connectome relationships were used for sex 202 
classification (n=270) as well as the prediction of cognitive composite scores (n=268, 2 subjects had 203 
no cognitive scores) and personality traits (n=269, 1 subject had no data on personality traits) by 204 
using machine learning. We also merged the two features (empirical and simulated) and used them 205 
for the same machine-learning approach for the classification and prediction analyses. Afterward, we 206 
compared the performances with feature conditions of empirical only, simulated only, and merged 207 
features. 208 

For the sex classification, we used a nested 5-fold cross-validation (CV) scheme, where every outer 209 
CV loop (k=5) included the embedded 5 inner loops as a nested CV (inner 5-fold CV) for training the 210 
prediction model using hyperparameter optimization. The training procedure started with a random 211 
splitting of the entire subject sample into 5 equally-sized subgroups while maintaining the ratio of 212 
female/male in each subgroup. Subsequently, in every outer loop, one subgroup was selected after 213 
another as a testing set, and the other 4 subgroups were united into a training set. In the inner loop 214 
with the training set, we performed a confound removal (CR) to remove the effect of brain volumes 215 
on the sex classification from the features, i.e., connectome relationships. For this we used the 216 
univariate linear regression with the brain volumes (sum of cortical, subcortical and white matter 217 
volumes), estimated the parameters of the linear model, and z-scored the obtained residuals across 218 
subjects in the training set. Finally, we used a logistic regression with an L2 penalty for the training 219 
in the nested CV, and the regularizing parameter was optimized by the Limited memory Broyden-220 
Fletcher-Goldfarb-Shanno algorithm (L-BFGS). After the training in the nested CV, the best model 221 
was selected and applied to the testing set to classify the unseen subjects as females or males. Here, 222 
the respective CR and z-scoring with parameters obtained for the training set were applied 223 
beforehand. Such a CV-CR scheme prevents a data leakage, where no information from the testing 224 
set was used during the training (More et al., 2021). We repeated this prediction process 100 times 225 
for different random subject splits into 5 subgroups. Finally, we calculated a balanced accuracy using 226 
predicted probability and target variables (female or male). 227 

The CV-CR scheme (5-fold nested CV and CR with brain volumes and ages) was used for predicting 228 
the total cognitive function composite score (CogTotalComp_Unadj) as general intelligence acquired 229 
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in the NIH toolbox (https://www.nihtoolbox.org) and also the Five-Factor Model (McCrae and Costa, 230 
2004) known as the big five personality traits including openness, conscientiousness, extraversion, 231 
agreeableness and neuroticism. The entire group was split into training and testing sets as before 232 
while keeping the shape of scores' distributions for the training and testing sets for an efficient and 233 
reliable CV performance (Budka and Gabrys, 2013). Here, the training and testing sets were created 234 
by stratifying the subjects among 7 subgroups balanced within 7 intervals of each target score 235 
(cognitive and personality traits) in order to mimic the distribution of the entire cohort. We applied a 236 
ridge regression with L2 penalty for training the prediction model, and the optimal regularizing 237 
parameter values were selected among several discrete values of 10-6, 10-5, ..., 105, and 106. The 238 
model with the optimal regularizing parameter was selected, which demonstrated the highest 239 
Pearson's correlation coefficient between predicted values and the target scores across subjects in the 240 
training set. Consequently, the best model trained through the nested CV on the training set was 241 
applied to the testing set to predict the target scores of unseen subjects. We repeated this CV-CR 242 
prediction 100 times with each iteration having different stratified subject splits. Finally, we 243 
calculated Pearson's correlation between predicted and measured scores for prediction performance. 244 

For the machine-learning approach, we used Python version 3.11 with modules including Scikit-learn 245 
version 1.3.0 (Pedregosa et al., 2011), NumPy version 1.24.4 (Harris et al., 2020), and SciPy version 246 
1.11.1 (Virtanen et al., 2020). 247 

2.6 Statistical analysis 248 

Effect sizes of the difference between prediction performance of feature conditions were calculated 249 
by the Rosenthal formula (Rosenthal et al., 1994) which used z-statistics also utilized for calculation 250 
of the p-values of Wilcoxon rank-sum two-tail test. Bonferroni correction was applied for corrected 251 
p-values in multiple comparisons. Principal component analysis (PCA) was performed for features, 252 
and loadings of each principal component were estimated. All statistical tests and data visualizations 253 
were performed in MATLAB (R2024a; MathWorks). 254 

3 Results 255 

By leveraging empirical whole-brain connectomes for the whole-brain dynamical modeling, we 256 
successfully generated sFC that can be used alongside the eFC. This allows us to characterize whole-257 
brain dynamics through connectome relationships, highlighting inter-individual variability. Both 258 
empirical and simulated connectome relationships can be considered as individual features of whole-259 
brain dynamics and used to classify subjects into different categories or predict their behavioral 260 
characteristics using machine-learning approaches. Here, simulated data can complement empirical 261 
neuroimaging data or serve as stand-alone features, which can improve the prediction performance. 262 
As an example of the proposed framework, we demonstrate that the modeling results can effectively 263 
classify subjects by sex (male vs. female) and predict their general intelligence as well as personality 264 
traits, showing improved performance compared to using empirical features alone. 265 

3.1 Model-based connectome relationships as leveraged feature information 266 

To calculate brain connectomes and their relationships, we utilized two brain parcellation schemes. 267 
One is the Schaefer atlas with 100 regions (Schaefer et al., 2018), where the cortical surface was 268 
divided based on functional characteristics of the brain. The other one is the Harvard-Oxford atlas 269 
with 96 regions (Desikan et al., 2006), where structural brain characteristics were used for cortical 270 
parcellation. The connectome relationships as given by the Pearson's correlation between the 271 
respective connectivity matrices were calculated for every subject leading to distributions of their 272 

https://www.nihtoolbox.org/
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values for a given subject cohort (Figure 2a). We observed that the two considered parcellation 273 
schemes yielded different distributions for the empirical structure-function connectome relationships 274 
corr(eFC, eSC) (Figure 2a, Emp.). In particular, the Harvard-Oxford atlas supported a somewhat 275 
stronger structure-function relationship as compared to the Schaefer atlas. Similarly, the simulated 276 
connectome relationships corr(eFC, sFC) also produced different ranges of values depending on the 277 
parcellation scheme applied (Figure 2a, Sim.). The considered functional connectome relationship 278 
involving the simulated data sFC is important in the brain modeling and frequently used in the 279 
literature as a measure of the best fitted model to empirical functional data (Honey et al., 2009). We 280 
observed that the simulated connectome relationships (eFC vs. sFC) exhibited a much broader spread 281 
as compared to the empirical connectome relationships (eFC vs. eSC) including an enhanced inter-282 
individual variability when the simulated data were involved (interquartile ranges, empirical vs. 283 
simulated features: 0.033 vs. 0.104 for the Schaefer atlas, and 0.044 vs. 0.136 for the Harvard-Oxford 284 
atlas). The effect size of the difference between the atlases was similarly large for both empirical and 285 
simulated data (effect size: 1.088 vs. 1.077 for empirical data and simulated data, respectively). 286 
Furthermore, the difference between the mean values of each atlas is larger for the simulated data 287 
(effect size: 0.679 vs. 1.189 for the Schaefer and Harvard-Oxford atlas, respectively, see Figure 2a). 288 

The illustrated empirical and simulated connectome relationships can be considered as features for 289 
the machine-learning prediction approaches, where the enhanced inter-subject variability of the 290 
simulated features (larger spread of the feature distributions) might be a good indication for involving 291 
the simulated data in the analyses. To examine the extent of overlap and difference in the feature 292 
information under the considered four conditions (2-by-2) shown in the legend in Figure 2a, we 293 

Figure 2 Empirical and simulated features (connectome relationship) for machine learning. (a) 
Feature distributions across individual subjects for two brain parcellations given by the Schaefer atlas 
(100 regions) and the Harvard-Oxford atlas (96 regions) as indicated in the legend. (b-c) Principal 
component analysis (PCA) of the feature variability across 4 feature conditions: empirical, simulated 
and the two considered brain parcellations. The loadings and the fractions of the explained variance 
by different principal components are illustrated in plots (b) and (c), respectively. The color and line 
schemes are as in plot (a). The cumulative explained variance across all conditions is depicted in plot 
(c) by bars in light green color. Abbreviations: eFC: empirical functional connectivity, eSC: 
empirical structural connectivity, sFC: simulated FC, PC: principal component. 
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performed PCA using empirical and simulated features of the connectome relationships. 294 
Interestingly, we found that the first two principal components (PC1 and PC2), which deliver the 295 
largest fraction of the explained variance of all connectome relationships, primarily related to the 296 
simulated features (Figure 2b-c), while the next two components (PC3 and PC4) explained the 297 
empirical features. Furthermore, PC1 and PC3 represented common contributing factors in the 298 
simulated and empirical connectome relationships, respectively, of the two parcellation schemes 299 
(Figure 2b). In contrast, PC2 and PC4 distinguished the parcellation schemes in the respective 300 
simulated and empirical feature conditions (Figure 2b). The two first PCs with the loading by 301 
simulated data cumulatively explained up to 90% of the variance of all features (Figure 2c). The 302 
observed segregation of the empirical and simulated features into different PCs as well as the leading 303 
role of the latter features in PCA further support the expectations of a positive contribution of the 304 
simulated features to prediction results, which can be used either as stand-alone features or as a 305 
complement to empirical ones. 306 

3.2 Classification and prediction performance 307 

Since the empirical and simulated connectome relationships exhibit distinct variabilities across 308 
individuals (Figure 2), these two types of connectome relationships might contribute differently to a 309 
machine-learning prediction process. To investigate this, we prepared three distinct feature sets: 310 

Figure 3. Machine-learning performances in sex classification and prediction of general intelligence. 
(a) Accuracy of sex classification as given by the fraction of correctly classified subjects for the 
training and testing sets as indicated in the legend. Distributions of balanced accuracy across cross-
validation (CV) folds are shown. The mean values of the distributions are indicated by vertical 
dashed lines. The three plots illustrate the cases of (from top to bottom) the empirical features (Emp.), 
the simulated features (Sim.), and combination of the empirical and simulated features (Emp. & 
Sim.). The features of the two parcellations were merged in each condition. (b) Prediction of the total 
cognitive function composite scores (Pearson's correlation between predicted and empirical scores) 
for training and testing sets with the same scheme of (a). (c) Comparison of the sex classification and 
(d) prediction performance of the three feature conditions. The magenta bars depict statistically 
significant differences (with p < 0.05 of the Wilcoxon rank-sum two-tail test Bonferroni-corrected for 
multiple comparisons) in the distribution of prediction between the feature conditions indicated on 
the horizontal axis. 
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empirical (Emp.), simulated (Sim.), and combined empirical and simulated (Emp. & Sim.) features. 311 
Here, the first feature set (Emp.) includes the empirical structure-function relationships (Pearson's 312 
correlation between eSC and eFC), the second feature set (Sim.) includes the relationships between 313 
eFC and sFC (GoF values), and the third feature set (Emp. & Sim.) includes both the empirical and 314 
simulated features. We then performed two machine-learning analyses using these features to (i) 315 
classify the individual subjects as females or males and (ii) predict a continuous behavioral score as 316 
given by the general intelligence based on the total cognitive function composite score (Akshoomoff 317 
et al., 2013). For both cases and under each feature condition, we calculated prediction performance 318 
on the training set and after applying the model to the testing set of unseen subjects (Figure 3a, b). 319 
Sex classification on the test subject sets shows that the balanced accuracy was significantly 320 
enhanced, when the simulated features were employed in the classification analysis as compared to 321 
the case of the empirical features (Bonferroni-corrected p < 0.05) (Figure 3c, compare "Emp." to " 322 
Sim."). The machine-learning analysis applied to predict the general intelligence also exhibited 323 
improved performance with features that contain the simulated data. This was confirmed by 324 
statistical tests demonstrating a significant improvement of the prediction performance for the 325 
simulated features (Sim.) as well as for a combination of the empirical and simulated features (Emp. 326 
& Sim.) compared to the case of the empirical features (Emp.) (Figure 3d). 327 

3.3 Enhanced performance with high-dimensional parameter optimization 328 

We also fitted the model to empirical data in high-dimensional parameter spaces, where around 100 329 
model parameters were simultaneously optimized by the CMAES algorithm. In such a way we 330 
obtained an increased GoF, where the simulated FCs closely approached the empirical FCs of 331 
individual subjects leading to a higher model personalization. For example, the mean GoF = 0.607 332 

Figure 4. Prediction results with different feature conditions based on empirical features: Emp., 
simulated features with low-dimensional parameter optimization: Sim. (Low dim.) and high-
dimensional parameter optimization: Sim. (High dim.). (a) Results of sex classification with five 
different feature conditions shown in the figure legend in the center. Dashed vertical lines indicate 
mean values of performance in each feature condition. (b-g) Results of prediction for cognition (b: 
general intelligence) and five personality traits (c-g: agreeableness, conscientiousness, extraversion, 
neuroticism, and openness). 
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and 0.724 for high-dimensional model fitting of the Schaefer and Harvard-Oxford atlases, 333 
respectively, may be compared to the respective GoF = 0.299 and 0.501 for the low-dimensional 334 
model fitting (Figure 2a). We then applied the simulated connectome relationships of the high-335 
dimensional model fitting as features to machine learning. Interestingly, the results showed that 336 
involving the simulated features obtained through high-dimensional optimization yielded the best 337 
outcome in the sex classification (Figure 4a). Additionally, in the prediction of personality traits 338 
(Figure 4c-g), the simulated features showed the best results in four out of five traits, except for the 339 
openness, where the empirical features demonstrated the best performance (Figure 4g). These 340 
findings indicate that whole-brain dynamical modeling can enhance the performance of machine 341 
learning. This is especially evident in predictions of cognitive ability and personality traits, where the 342 
empirical features mainly showed correlations near zero, whereas the simulated features 343 
demonstrated clearly improved results. 344 

Finally, when looking at the overall concatenated results of predicting all five personality traits, the 345 
simulated features obtained through the high-dimensional parameter optimization showed the highest 346 
prediction correlation (Figure 5), and the difference from the results based on the empirical features 347 
was particularly large (effect size is 0.836). 348 

4 Discussion 349 

In this report, we demonstrated that connectome relationships derived from the whole-brain 350 
dynamical modeling can represent individual variability of brain dynamics in a distinct way 351 
compared to empirical connectome relationships. We also showed that involving simulated 352 
connectomes in the machine-learning prediction analysis can enhance its prediction performance. 353 
Furthermore, machine learning using simulated and empirical features in a complementary way 354 
exhibited comparable or even improved performance in relation to a separate utilization of these 355 
feature configurations. Our results suggest that incorporating model-based features alongside 356 
empirical ones can enhance the extent of information extracted from the features provided by 357 
neuroimaging data. Building on these findings, it is important to delve into the specific advantages 358 
offered by the model-based approach. 359 

The framework for the effective workflow proposed in this study consists of five steps, and the 360 
necessary procedures and possible approaches for each step are as follows: 361 

Figure 5. Overall concatenated prediction of personality traits. Each distribution includes Pearson's 
correlation coefficients between predicted and measured personality of all five traits in machine 
learning with 100 iterations and 5 folds cross-validation scheme, leading to 2500 points. 
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• Step 1: For the whole-brain dynamical modeling, three types of MRI data are required: T1w, 362 
dwMRI, and resting-state fMRI. For neuroimaging research, raw data, i.e., Digital Imaging and 363 
Communications in Medicine (DICOM) (Mildenberger et al., 2002) can be converted to a 364 
standard format such as Neuroimaging Informatics Technology Initiative (NIfTI) (Li et al., 2016). 365 
In addition, the data can be organized according to a consensus data organization called Brain 366 
Imaging Data Structure (BIDS) (Gorgolewski et al., 2016). Nowadays, many published datasets 367 
exist, which provide brain MRI necessary for the workflow such as OpenNeuro 368 
(https://openneuro.org) or other data collections, e.g., ADNI (https://adni.loni.usc.edu), AOMIC 369 
(Snoek et al., 2021), PPMI (Marek et al., 2011) and research projects like 1000BRAINS (Caspers 370 
et al., 2014), HCP (Van Essen et al., 2013), MOUS (Schoffelen et al., 2019), PNC (Satterthwaite 371 
et al., 2014), etc. 372 

• Step 2: This step of the workflow involves completing the preprocessing of MRI data and signal 373 
extractions through a pipeline. In this step, a careful selection of the data processing parameters 374 
with high quality control is necessary to check for errors or missing information in the acquired 375 
data. Small differences at the early stages can have a significant impact in the final stage of data 376 
modeling (Aquino et al., 2022; Domhof et al., 2022a; Domhof et al., 2021; Jung et al., 2021; Jung 377 
et al., 2023; Popovych et al., 2021; Zhang et al., 2024). The pipeline for processing MRI provided 378 
in this study (https://jugit.fz-juelich.de/inm7/public/vbc-mri-pipeline) can be configured in various 379 
ways depending on the purpose of the study. Alternatively, public pipelines such as fMRIPrep 380 
(Esteban et al., 2019), MRtrix3 (Tournier et al., 2019), QSIPrep (Cieslak et al., 2021), SPM 381 
(Friston et al., 1994), and FreeSurfer (Fischl, 2012) can be used. The processed data can be 382 
utilized to study the functional or structural characteristics of the brain through imaging analysis, 383 
as well as for modeling. 384 

• Step 3: This step involves parcellating the brain into multiple regions according to a given brain 385 
atlas considering various schemes (Amunts et al., 2020; Desikan et al., 2006; Glasser et al., 2016; 386 
Pijnenburg et al., 2021; Schaefer et al., 2018) and calculating functional and structural 387 
connectivity of each pair of regions in order to construct the human brain connectome (Sporns et 388 
al., 2005). At this stage, the data necessary for the modeling (step 4) will finally be prepared. A 389 
few datasets of BOLD signals, SC and FC calculated for many brain parcellations are available on 390 
the EBRAINS (https://www.ebrains.eu) platform ready for analysis and modeling (Domhof et al., 391 
2022b, c; Jung et al., 2022). Furthermore, since the structural and functional connectivities 392 
between brain regions can be interpreted as underlying structures of the information flow and its 393 
processing within the brain networks (Rubinov and Sporns, 2010), studies can be conducted to 394 
explore the relationships between network characteristics of SC and FC and behavioral, cognitive 395 
and clinical scores (Fornito et al., 2015; Sporns, 2014). 396 

• Step 4: A whole-brain dynamical model can be constructed based on the empirical whole-brain 397 
connectomes and used to simulate brain dynamics such as electrical neuronal activity and BOLD 398 
signals. By varying the model parameters, one can analyze the simulated brain dynamics in 399 
comparisons with empirical data using BOLD signals (Friston et al., 2003), FC (Honey et al., 400 
2009), dynamic FC that captures evolution of FC over time (Glomb et al., 2017), SC (Popovych et 401 
al., 2021), metastability (Deco and Kringelbach, 2016), behavioral or clinical scores (Jung et al., 402 
2024; Jung et al., 2023), etc. This allows us to find optimal model parameters, where the model 403 
best replicates empirical brain dynamics and behavior depending on the study objectives. Several 404 
software packages are available for the modeling of neuronal brain dynamics, for example, The 405 
Virtual Brain (Sanz-Leon et al., 2015), NEST (Gewaltig and Diesmann, 2007) and DCM (Friston 406 
et al., 2003) to mention a few. Furthermore, by employing dedicated parameter optimization 407 
algorithms (Wischnewski et al., 2022), we can obtain fine-tuned models for an improved 408 
replication of empirical data. Such a whole-brain dynamical modeling approach provides 409 

https://openneuro.org/
https://adni.loni.usc.edu/
https://jugit.fz-juelich.de/inm7/public/vbc-mri-pipeline
https://www.ebrains.eu/
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personalized optimal model parameters after model fitting toward specific target neuroimaging or 410 
behavioral scores of individual subjects, thereby showing the strongest relationship between 411 
simulated results of optimal models and clinical characteristics (Jirsa et al., 2023; Jung et al., 412 
2024; Jung et al., 2023) or cognitive functions as demonstrated in the present study. 413 

• Step 5: This stage involves conducting machine-learning prediction analysis using model-based 414 
data obtained from the previous steps. In this step, the cross-validated model-based scheme (Jung 415 
et al., 2023) extracts effective simulated features derived from personalized optimal models, and 416 
their predictive performances are evaluated using machine-learning techniques. This approach 417 
allows us to incorporate additional model-based features into the machine-learning process while 418 
keeping the established protocols of conventional machine-learning methodologies based on 419 
neuroimaging empirical data. The cross-validated model-based machine-learning approach has 420 
demonstrated improved prediction performance, as evidenced by medical data (Jung et al., 2023) 421 
and this study. 422 

The discussed model-based approach can effectively be used for testing a variety of experimental and 423 
data-processing conditions applicable to many topics of brain research (Jirsa et al., 2023; Popovych 424 
et al., 2019). This approach has several advantages including enhanced reliability and flexibility as 425 
well as cost efficiency as it eliminates the burden to repeatedly acquire whole-brain dynamics from 426 
participants under different experimental conditions in the scanner. Additionally, given the diversity 427 
of approaches for the whole-brain modeling (Cabral et al., 2017; Deco et al., 2021; Jirsa et al., 2017; 428 
Moran et al., 2013), researchers can select and utilize models that best align with their research 429 
objectives, thereby facilitating model-based connectome investigation.  430 

A critical aspect of this modeling process is the selection of data processing pipelines, including brain 431 
parcellation schemes and other parameters, which can significantly influence the modeling outcomes 432 
(Jung, 2023). More than 20 brain parcellation schemes have been employed in neuroimaging 433 
research, contributing to the diversity of the simulated brain dynamics (Domhof et al., 2021; 434 
Popovych et al., 2021). Moreover, variations in neuroimaging processing pipelines can substantially 435 
affect research outcomes (Aquino et al., 2022; Jung et al., 2021; Zhang et al., 2024), and multiple 436 
strategies of model-fitting methods can be applied to optimizing whole-brain models in different 437 
ways (Deco et al., 2017; Jung et al., 2024; Jung et al., 2023; Wischnewski et al., 2022). The 438 
variability of simulated connectomes across subjects can also provide more personalized data across 439 
a broader range of perspectives compared to analyses based solely on empirical results (Domhof et 440 
al., 2022a).  441 

By incorporating model-based features alongside empirical data, we can extensively explore brain 442 
connectomes and their relationships, offering enhanced performance and other benefits. At the same 443 
time, researchers can gain a deeper understanding of the brain dynamics. Given the recent 444 
advancements in digital brain research, integrating and expanding brain models (Amunts et al., 445 
2024), the systematic model-based approach proposed in this report represents a promising method 446 
for advancing brain models and their applications. Consequently, this approach underscores the 447 
potential for leveraging integrated data to provide comprehensive insights and improved predictive 448 
capabilities in neuroimaging research. 449 
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