001     1033625
005     20250414120451.0
024 7 _ |a 10.1002/cssc.202402027
|2 doi
024 7 _ |a 1864-5631
|2 ISSN
024 7 _ |a 1864-564X
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-06498
|2 datacite_doi
024 7 _ |a 39546388
|2 pmid
024 7 _ |a WOS:001362898300001
|2 WOS
037 _ _ |a FZJ-2024-06498
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Astakhov, Oleksandr
|0 P:(DE-Juel1)130212
|b 0
|e Corresponding author
245 _ _ |a Unfolding Electrolyzer Characteristics to Reveal Solar‐to‐Chemical Efficiency Potential: Rapid Analysis Method Bridging Electrochemistry and Photovoltaics
260 _ _ |a Weinheim
|c 2024
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1733227515_7753
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Development of photovoltaic−electrochemical (PV-EC) systems for energy storage and industry decarbonization requires multidisciplinary collaborative efforts of different research groups from both photovoltaic and electrochemical research communities. Consequently, the evaluation of the solar-to-chemical or solar-to-fuel efficiency of a new electrolyzer (EC) as a part of a PV-EC system is a time-consuming task that is challenging in a routine optimization loop. To address this issue, a new rapid assessment method is proposed. This method employs power balance requirements to unfold the input EC characteristics into the parameter space of PV-EC systems. The system parameters, composed with the EC output characteristics, yield the solar-to-chemical efficiency attainable by the electrolyzer in combination with any PV device under any irradiance at any relative PV-to-EC scaling and any mode of power coupling. This comprehensive overview is achieved via a mathematically simple conversion of the EC characteristics in any spreadsheet software. The method, designed to streamline the development and minimize the efforts of both the photovoltaic and electrochemical communities, is demonstrated via the analysis of CO2-reduction electrolyzer characteristics and verified with dedicated PV-EC experiments.
536 _ _ |a 1233 - Solar Fuels (POF4-123)
|0 G:(DE-HGF)POF4-1233
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Cibaka, Thérèse
|0 P:(DE-Juel1)190629
|b 1
700 1 _ |a Wieprecht, Lars
|0 P:(DE-Juel1)188750
|b 2
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)130285
|b 3
|u fzj
700 1 _ |a Merdzhanova, Tsvetelina
|0 P:(DE-Juel1)130268
|b 4
773 _ _ |a 10.1002/cssc.202402027
|g p. e202402027
|0 PERI:(DE-600)2411405-4
|p e202402027
|t ChemSusChem
|v -
|y 2024
|x 1864-5631
856 4 _ |u https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.202402027
856 4 _ |u https://juser.fz-juelich.de/record/1033625/files/supplementary.xlsx
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1033625/files/ChemSusChem%20-%202024%20-%20Astakhov%20-%20Unfolding%20Electrolyzer%20Characteristics%20to%20Reveal%20Solar%E2%80%90to%E2%80%90Chemical%20Efficiency%20Potential%20.pdf
|y Restricted
|z StatID:(DE-HGF)0599
856 4 _ |u https://juser.fz-juelich.de/record/1033625/files/Final%20Draft%20Post%20Referee%20Supporting%20Information.pdf
|y OpenAccess
|z StatID:(DE-HGF)0510
856 4 _ |u https://juser.fz-juelich.de/record/1033625/files/Final%20Draft%20Post%20Referee.pdf
|y OpenAccess
|z StatID:(DE-HGF)0510
909 C O |o oai:juser.fz-juelich.de:1033625
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130212
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)190629
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)188750
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130285
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130268
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1233
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEMSUSCHEM : 2022
|d 2023-10-25
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-25
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMSUSCHEM : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IMD-3-20101013
|k IMD-3
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-3-20101013
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21