001033632 001__ 1033632
001033632 005__ 20250401102820.0
001033632 0247_ $$2doi$$a10.1117/12.3025640
001033632 0247_ $$2WOS$$aWOS:001337019000010
001033632 037__ $$aFZJ-2024-06504
001033632 1001_ $$0P:(DE-Juel1)204410$$aScheidt, Dennis$$b0$$eCorresponding author
001033632 1112_ $$aNovel Optical Systems, Methods, and Applications XXVII$$cSan Diego$$d2024-08-18 - 2024-08-23$$wUnited States
001033632 245__ $$aWavefront correction of Bessel beams by shaping its annular angular spectrum
001033632 260__ $$c2024
001033632 3367_ $$033$$2EndNote$$aConference Paper
001033632 3367_ $$2DataCite$$aOther
001033632 3367_ $$2BibTeX$$aINPROCEEDINGS
001033632 3367_ $$2DRIVER$$aconferenceObject
001033632 3367_ $$2ORCID$$aLECTURE_SPEECH
001033632 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1733987660_21024$$xInvited
001033632 502__ $$cUniversidad Nacional Autónoma de México
001033632 520__ $$aThis work introduces a novel method to significantly reduce the number of measurements needed for wavefront correction in strongly scattering media, as compared to traditional approaches. The key innovation lies in defining the beam using an annular angular spectrum rather than a 2D grid. We employ a Spatial Light Modulator (SLM) for both the preparation and sampling of the annular angular spectrum. The speckle pattern of the transmitted beam is evaluated at a single point of a detector, and the phase distribution is measured using three-step interferometry. The final correction to the transmitted beam is achieved by applying the conjugate phase onto the initial beam defined on the spatial light modulator. Remarkably, 64 measurements already provide a reasonably effective wavefront correction. However, optimal results are attained when the spatial azimuthal sampling frequency of the angular spectrum matches the transverse wave vector of the generated quasi-Bessel beam.
001033632 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001033632 536__ $$0G:(DE-Juel-1)aidas_20200731$$aAIDAS - Joint Virtual Laboratory for AI, Data Analytics and Scalable Simulation (aidas_20200731)$$caidas_20200731$$x1
001033632 588__ $$aDataset connected to CrossRef Conference
001033632 7001_ $$0P:(DE-HGF)0$$aArzola, Alejandro$$b1
001033632 7001_ $$0P:(DE-HGF)0$$aQuinto-Su, Pedro$$b2
001033632 7001_ $$0P:(DE-HGF)0$$aHahlweg, Cornelius F.$$b3$$eEditor
001033632 7001_ $$0P:(DE-HGF)0$$aMulley, Joseph R.$$b4$$eEditor
001033632 773__ $$a10.1117/12.3025640
001033632 8564_ $$uhttps://www.spiedigitallibrary.org/conference-proceedings-of-spie/13130/131300B/Wavefront-correction-of-Bessel-beams-by-shaping-its-annular-angular/10.1117/12.3025640.short#_=_
001033632 8564_ $$uhttps://juser.fz-juelich.de/record/1033632/files/Conference_Paper.pdf$$yRestricted
001033632 909CO $$ooai:juser.fz-juelich.de:1033632$$pVDB
001033632 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)204410$$aForschungszentrum Jülich$$b0$$kFZJ
001033632 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001033632 9141_ $$y2024
001033632 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
001033632 980__ $$aconf
001033632 980__ $$aVDB
001033632 980__ $$aI:(DE-Juel1)INM-1-20090406
001033632 980__ $$aUNRESTRICTED