001     1033636
005     20250317091735.0
024 7 _ |a 10.1016/j.future.2024.107541
|2 doi
024 7 _ |a 0167-739X
|2 ISSN
024 7 _ |a 1872-7115
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-06508
|2 datacite_doi
024 7 _ |a WOS:001358353300001
|2 WOS
037 _ _ |a FZJ-2024-06508
082 _ _ |a 004
100 1 _ |a Witzler, Christian
|0 P:(DE-Juel1)177933
|b 0
245 _ _ |a JuMonC: A RESTful tool for enabling monitoring and control of simulations at scale
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736163263_29200
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a As systems and simulations grow in size and complexity, it is challenging to maintain efficient use of resources and avoid failures. In this scenario, monitoring becomes even more important and mandatory. This paper describes and discusses the benefits of the advanced monitoring and control tool JuMonC, which runs under user control alongside HPC simulations and provides valuable metrics via REST-API. In addition, plugin extensibility allows JuMonC to go a step further and provide computational steering of the simulation itself. To demonstrate the benefits and usability of JuMonC for large-scale simulations, two use cases are described employing nekRS and ICON on JURECA-DC, a supercomputer located at the Jülich Supercomputing Centre (JSC). Furthermore, a large-scale use case with nekRS on JSC’s flagship system JUWELS Booster is described. Finally, the interplay between JuMonC and LLview (a standard monitoring tool for HPC systems) is presented using a simple and secure JuMonC-LLview plugin, which collects performance metrics and enables their analysis in LLview. Overall, the portability and usefulness of JuMonC, together with its low performance impact, make it an important application for both current and future generations of exascale HPC systems.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a CoEC - Center of Excellence in Combustion (952181)
|0 G:(EU-Grant)952181
|c 952181
|f H2020-INFRAEDI-2019-1
|x 1
536 _ _ |a IO-SEA - IO Software for Exascale Architecture (955811)
|0 G:(EU-Grant)955811
|c 955811
|f H2020-JTI-EuroHPC-2019-1
|x 2
536 _ _ |a DEEP-SEA - DEEP – SOFTWARE FOR EXASCALE ARCHITECTURES (955606)
|0 G:(EU-Grant)955606
|c 955606
|f H2020-JTI-EuroHPC-2019-1
|x 3
536 _ _ |a JLESC - Joint Laboratory for Extreme Scale Computing (JLESC-20150708)
|0 G:(DE-Juel1)JLESC-20150708
|c JLESC-20150708
|f JLESC
|x 4
536 _ _ |0 G:(DE-Juel-1)ATMLAO
|a ATMLAO - ATML Application Optimization and User Service Tools (ATMLAO)
|c ATMLAO
|x 5
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Guimarães, Filipe Souza Mendes
|0 P:(DE-Juel1)162225
|b 1
700 1 _ |a Mira, Daniel
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Anzt, Hartwig
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Göbbert, Jens Henrik
|0 P:(DE-Juel1)168541
|b 4
700 1 _ |a Frings, Wolfgang
|0 P:(DE-Juel1)132108
|b 5
700 1 _ |a Bode, Mathis
|0 P:(DE-Juel1)192255
|b 6
|e Corresponding author
773 _ _ |a 10.1016/j.future.2024.107541
|g Vol. 164, p. 107541 -
|0 PERI:(DE-600)2020551-X
|p 107541 -
|t Future generation computer systems
|v 164
|y 2025
|x 0167-739X
856 4 _ |u https://juser.fz-juelich.de/record/1033636/files/1-s2.0-S0167739X24005053-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1033636
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162225
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)168541
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)132108
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)192255
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-19
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-19
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FUTURE GENER COMP SY : 2022
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b FUTURE GENER COMP SY : 2022
|d 2024-12-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21