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ARTICLE INFO ABSTRACT

Keywords: As systems and simulations grow in size and complexity, it is challenging to maintain efficient use of
High-performance computing resources and avoid failures. In this scenario, monitoring becomes even more important and mandatory.
Monitoring This paper describes and discusses the benefits of the advanced monitoring and control tool JuMonC, which
Computational steering runs under user control alongside HPC simulations and provides valuable metrics via REST-APL In addition,
EEE;_SAPI plugin extensibility allows JuMonC to go a step further and provide computational steering of the simulation
ICON itself. To demonstrate the benefits and usability of JuMonC for large-scale simulations, two use cases are

described employing nekRS and ICON on JURECA-DC, a supercomputer located at the Jiilich Supercomputing
Centre (JSC). Furthermore, a large-scale use case with nekRS on JSC’s flagship system JUWELS Booster is
described. Finally, the interplay between JuMonC and LLview (a standard monitoring tool for HPC systems) is
presented using a simple and secure JuMonC-LLview plugin, which collects performance metrics and enables
their analysis in LLview. Overall, the portability and usefulness of JuMonC, together with its low performance
impact, make it an important application for both current and future generations of exascale HPC systems.

1. Introduction extended by the tool in this article in order to be optimally prepared
for exascale workflows.
More specifically, the exascale workflow can be supported by inter-

active in-situ monitoring and control, allowing a human-in-the-loop to

Exascale supercomputers enable completely new scientific insights
by significantly expanding the parameter space accessible to simula-

tions. However, these extremely large simulations very often also result
in increasingly complex workflows that are becoming more and more
difficult to manage. This is further complicated by the increasingly
heterogeneous architecture (CPUs and GPUs) of supercomputers [1,2].

As part of the preparations for the first European exascale super-
computer, JUPITER, which will be based at Jiilich Supercomputing
Centre (JSC) from 2024, exascale-enabled workflows for complex sim-
ulations are also being developed. Such a workflow could, for example,
consist of a simulation code, an in-transit visualization service, an
on-the-fly machine learning (ML) framework, and a tool for simula-
tion monitoring and control. In this context, a visualization service
using SENSEIL, ADIOS2, and ParaView [3,4] and the ML framework
JuLES [5,6] have been established at the JSC as an application example
around the nekRS/nekCRF simulation code [7,8] — a leading HPC code
framework for computational fluid dynamics (CFD). This workflow is
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supervise simulation performance and progress. With this in mind, Ju-
MonC (Juelich Monitoring and Control) has been developed to greatly
simplify the collection and analysis of runtime information and is
documented and discussed in this work.

1.1. Novel contribution

The main goal of JuMonC is to allow users to monitor jobs, track
their progress, and identify potential problems related to code develop-
ment, job setup, and job execution. This information is of great interest
and relevance to both users and system operators. For example, up-to-
date and easily accessible runtime information can be used to detect
load imbalances. This can help avoid under- or over-utilization of avail-
able resources by identifying potential bottlenecks that each simulation
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may face, as well as detecting nodes that are under-performing due to
hardware-related issues, so that immediate action can be taken.

In addition to monitoring, another goal is to provide an API base
that allows the job controller to influence the simulation at runtime.
The extent to which this control is ultimately possible depends on the
application’s implementation of this functionality. Examples of what
could be achieved range from a simple data dump (which could be
induced to be used for a later restart) or clean job termination, up to
rebalancing the load of certain nodes — or even removing them from
the simulation altogether.

Simulation control is a key feature that enables in-situ processing.
This type of live handling of the output provides real-time access to
the data for various use cases. JuMonC enables easy setup of in-situ
tools and provides all the information needed to connect to a running
job. An example of such a tool is Catalyst, which can be setup with an
(additional) data consumer to access the VTK data in Paraview.

JuMonC is designed to run in user space, under user control. This
has the advantage that it runs parallel to the application, reducing
the complexity of the interaction between JuMonC and the simula-
tions. Together with a simple extension support, this can allow custom
functionality such as performing specific analyses, changing simulation
parameters, or data dumps.

To perform these tasks, data must to be available to the end users.
The goal here is to collect monitoring information and make it ac-
cessible in the form of a REST-APIL. REST stands for ‘Representational
State Transfer’ and is generally accessible via network requests. A REST-
API is characterized by stateless communication, simple interfaces, and
communication using HTTP(S) features that it incorporates. Further-
more, a REST-API should be self-explanatory, pointing to other parts of
the API so that any functionality can be found from a single starting
point. Finally, user endpoints do not need to comply with additional
protocol requirements, allowing for a more flexible choice of software
to access this APIL

To make the REST-API user-friendly, it is important that the func-
tionality is logically structured and easy to use. To achieve this, Ju-
MonC’s REST-API organizes information in a hierarchical tree structure.
This organization is usually appropriate for a web resource due to the
use of slash-separated paths, e. g., ‘network/status/bytes’, which defines
the hierarchy: information about the ‘network’, restricted to the ‘status’
information of the ‘bytes’. The entire REST-API is structured like this
in a very similar and descriptive way. In the case of the leaves of
this tree, it is possible to further specify the operation by influencing
the execution with parameters. For example, it is possible to provide
arguments to request the data from a specific node or average the data
over a specific time.

To summarize, JuMonC is unique in the sense that it is flexible,
extensible and scalable, enables simulation monitoring and control,
and integrates easily into complex usage workflows on supercomputers.
None of these features alone is groundbreaking, but the combination
makes JuMonC a novel tool for HPC systems.

1.2. Outline

To give a complete view of the capabilities of JuMonC, this paper
is organized as follows: Section 2 describes other monitoring tools
that are used in the high-performance computing (HPC) community,
and highlights their differences from JuMonC. Section 3 is devoted to
detailing the background of the technology used by JuMonC. A com-
prehensive description of JuMonC is then given in Section 4. To further
demonstrate the functionality of JuMonC and to provide use cases for
performance measurements, a nekRS example and an ICON application
are described in Section 5. Integration with the LLview monitoring tool
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is also discussed. Measurements and functionality are further elabo-
rated in Section 6. Finally, a summary and an outlook for future work
is given in Section 7.

2. Related work

While monitoring is a common task in HPC, there is no single tool
that fits all purposes. With a vast number of different applications,
including many that are developed by and for the computing centers
themselves, it is only to be expected that they will have different
strengths and weaknesses. Some of the most well-known examples
of monitoring tools are Prometheus [9], which is open source and
provides many metrics collectors (or exporters) of data that is typically
visualized with Grafana [10], Elasticsearch [11], and Kibana [12,13].
Examples of self-developed monitoring tools are MPCDF, developed
at the Max-Planck-Institute [14,15], and the HPC Report from the
Leibniz-Rechenzentrum (LRZ) [16].

At the Jiilich Supercomputing Centre, the monitoring tool of choice
is LLview [17], which has been developed internally for several decades
[18] and provides fast and unobtrusive job reports that are generated
for each job running on the supercomputers. LLview automatically
collects and processes various performance metrics per minute and
allows users to access a summary of the collected data in near real time
a few minutes later.

Other monitoring tools for other sites such as ClusterCockpit [19],
LIMITLESS [20], DiMMon [21], or Ganglia [22] are all options for
scalable monitoring systems. While they have different architectures
and different strengths, they have in common that they are set up
by site administrators and run without direct user interaction. This
allows for the collection of system monitoring information, but makes
it difficult to monitor application-specific parameters.

In contrast to all of these tools, JuMonC is intended to be run by
the user, i.e., under user control, with one running instance per job.
The goal of JuMonC is to focus more on ad-hoc data collection to
provide more flexibility to the user. There is still some support for
automated data collection, but the main idea behind JuMonC is that
users can query data when they need it with the preferred frequency.
JuMonC aims to be independent of any other complex tool (but of
course has other common libraries as dependencies), while still offering
the possibility of interoperability, by providing the data through an eas-
ily accessible REST-API as JSON files that are readable by both humans
and other programs. A distinct advantage of JuMonC is motivated by
user control, allowing easy extension with user-specific modules via
plugins. Each user can decide and develop small or large extensions
for specific data and accessibility needs. In addition, JuMonC can be
used across HPC sites because it is installed by the user without special
permission requirements. This increases code portability and allows
easier reuse of plugins, scripts, and collected data.

Finally, other approaches monitor application performance using
‘heartbeats’ included in the actual simulation that are collected and
evaluated [23]. This is something that can also be incorporated into
JuMonC through specific user-controlled plugins — taking advantage
of the easy extensibility mentioned above. Compared to tools like
Scalasca, JuMonC aims for a higher level of monitoring without going
into the actual details of application specific reasons for the perfor-
mance [24].

3. Background

Monitoring and computational steering operates in a broad field
of tension. On the one hand, these tools must be so close to the
hardware that they are able to access hardware counters and other
system metrics. On the other hand, they must be able to interact with
applications to be monitored and exchange information. A third layer
results from the local software environment of the HPC centers and
includes schedulers, accounting programs and other monitoring and
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Fig. 1. JuMonC overview, showing user access from the left and the components that
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REST-

app —> Task queue MPI

analysis libraries. As described in Section 2, there are many different
libraries that perform different tasks in this area of conflict. Overall,
however, no uniform software stack seems to have developed on the
large supercomputers in this area and many centers use tailor-made or
in-house solutions. At least in the European HPC ecosystem, there are
efforts to consolidate the software stacks in this area and provide users
on all Tier-0 supercomputers with a standardized software environment
for monitoring and control. However, this is likely to take a few
more years and will come too late for the first European exascale
supercomputers, for example.

In order to support the widest possible range of applications, Ju-
MonC uses existing standards wherever possible.. The main standards
used by JuMonC are described below.

REST is a commonly used communication pattern for web-based
applications. It works by breaking communication into small sub-
problems that are stateless. Accepted markers for a RESTful API are
[25]:

« Uniform interface;

+ Clear boundary between client and server;
- Stateless operations;

» RESTful resource caching;

» REST allows for multiple tiers of servers.

The Message Passing Interface (MPI) is a portable message passing
standard that defines library routines. There are several implementa-
tions of this standard for different programming languages. Key con-
cepts include point-to-point communication, collective (subset) com-
munication, and parallel I/0 [26].

JSON is a data exchange file format that uses human-readable text.
It associates the data with field names in a file. Because it uses human-
readable text but a clear syntax, it is easily read by humans and
computers alike [27]. For an example of the JSON used by JuMonC,
see the Listing 1.

19

2 "step":20,
3 "time":0.1,
4 "dt":0.005,
5 "CFL":0.0

6 |}

Listing 1: Example JSON returned by the JuMonC-nekRS plugin.

A JSON schema is a standard for describing the contents of other
files and adding additional metadata. It also allows a file to be checked
for correctness, such as whether all required values are present, and
whether data types and value ranges match. The schema file is written
as a JSON file to take advantage of its clear syntax [28]. An example
JSON Schema used by JuMonC can be seen in Listing 2.
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1 (4{

2 "$schema": "http://json-schema.org/draft
< -04/schema#",

3 "type": "object",

4 "properties": {

5 "step": {

6 "type": '"integer",

7 "minimum": O,

8 "description": "Theynumber of_ steps

< palreadyycompleted"

9 } 3

10 "time": {

1

25 3,

26 "required": [

27 "step",

28 "time ",

29 n"qg " s

30 "CFL"

31 ]

32 |}

Listing 2: Excerpts of an example JSON schema, describing the
results of a valid response. An example for a valid result for this
description can be seen in Listing 1.

4. Software architecture

This section focuses on the software architecture of JuMonC. Ju-
MonC is to be started as a separate process once on each node in
parallel with the simulation. It communicates via its REST-API from the
process on node 0, which is the central communication interface with
the user. This is where user requests are received and responded to,
depending on the request. An overview of JuMonC’s request workflow
can be seen in Fig. 1. It can be seen that there are several ways to
access JuMonC, even through a firewall that is commonly used on HPC
systems. By using a web-access-based API, there are many different
ways that users can access the data provided by JuMonC. The internal
data flows are also visible in Fig. 1, and will be discussed in more detail
in the following sections.

JuMonC is open source to allow for further development and to
support the HPC community. The source code is available on Git-
Lab (https://gitlab.jsc.fz-juelich.de/coec/jumonc) and it can be easily
installed using pip (https://pypi.org/project/jumonc/).

4.1. Task-based approach

JuMonC is task-based to allow parallel execution of different
queries, which is especially important because JuMonC allows queries
that collect data over long periods of time, such as the average network
throughput for a given interface. In the simplest case, where the query
is only to a part of JuMonC’s API tree, it is answered directly by
the REST-API. The next more difficult case for JuMonC is requesting
previous results, which can simply be retrieved from the results cache
and returned to the user.

Another case is when new results are requested. These need to be
actively collected. Again, there are different levels of complexity for
JuMonC, the simplest being a short query to a local plugin. If not only
local information is needed, but the answer is expected to be available
in a short time, the plugins can communicate with each other via MPI
and then provide the result on node zero of JuMonC. JuMonC uses its
own internal MPI communication, separated from the simulation use of
MPI.

The most complex case from JuMonC’s point of view is when a
process needs to be queried over a longer period of time across multiple
nodes, such as the average network traffic in the next minute. In this


https://gitlab.jsc.fz-juelich.de/coec/jumonc
https://pypi.org/project/jumonc/

C. Witzler et al.

case, the relevant information is stored in the task queue at rank zero.
From there it is communicated via MPI and executed on all nodes in
separate threads so that the MPI communication is not blocked in the
meantime. The response is a link and an estimated time, so that the
user does not have to wait long for an answer. Using the given link or
search queries for the database, the results can be retrieved from the
cache as soon as they are available.

The ability to handle user responses in two different ways was
made because the processing time of requests can vary significantly. For
very short requests it is convenient to get an answer directly without
having to make an extra request. This could block the internal MPI
communication depending on the request itself, so this is only possible
for short requests. Since long requests can be arbitrarily long in some
cases, since the length of a time average can be freely chosen by the
user, the internal communication must be freed from this blocking and
a response from the REST-API must be delivered in a reasonable time,
so that the user gets feedback. The decision as to whether a job is
short or long is mainly influenced by the averaging time set for the
relevant queries and compared to a configurable value. A standard
asynchronous REST call was not used because of the need to provide
the same interface and support for many user interfaces. However, not
all interfaces have tools readily available to use this, so a new method
of callbacks in the form of links that can be accessed by the user to
retrieve the results at a later time was added.

A more detailed view of the decision tree for this task-based ap-
proach can be seen in Fig. 2 for the node with rank 0 (root node). Rank
0 has a special role and could be a bottleneck, but for the intended use
case of a background task, the amount of data is considered to be small.
No problems caused by this have been seen in any testing. This includes
the REST-API interface, which is always the initiator of tasks, with no
requests JuMonC remaining in the background. While the flow for the
root node involves many parts, it is very simple for all other nodes. As
shown in Fig. 3 all other nodes have a very simple logic. All tasks arrive
with the MPI broadcast and are then executed. This can either trigger
a data gathering using a plugin or be a data collection process. If it is a
data gathering task, it will gather the data and store it locally with an
ID so that it can be found and returned in a later collection operation.

4.2. Plugins

To support simulations with significantly different requirements,
JuMonC uses a plugin model internally, allowing user-specific functions
and separate plugins to be loaded at startup, inheriting certain entry
points of a class. This makes JuMonC easily extensible and allows
plugins not only to communicate with simulations, but also to gather
other system data that may be of interest. Thus, it is possible to
collect new data by including alternative plugins, and without having
to directly develop JuMonC. Furthermore, it allows to extend the tasks
that a can be performed by the simulation through the REST-API, but
provides a similar interface through the use of JuMonC. Using a plugin
structure makes it easier for users and developers of simulation code to
adapt a plugin to their specific needs.

As a starting point for specific plugins, there is a plugin for Ju-
MonC that adds generic log parsing to the REST-API configured when
JuMonC is started. This provides a simple plugin that can be easily
customized for specific log files, as well as copied as a base for a plugin
that provides more simulation-specific functionality.

When JuMonC is started, it allows the use of parameters that are
passed to the specific plugin. Additional arguments, which can be
provided to all plugins and are independent of plugin development,
allow setting the base REST-API path for plugin functionality, as well
as disabling plugins that are not needed. By default, plugins can request
REST-API paths for their use, and only receive reassigned paths in case
of a conflict; by setting a different path for a plugin, the user can
prevent automatic renaming.
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Fig. 2. JuMonC process flow on the root node. The REST-API logic is shown on the left,
going through the task queue and being passed to the other nodes via MPI depending
on the task.
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Fig. 3. JuMonC’s other nodes process flow (root in Fig. 2), when data from different
nodes is needed.

4.3. JuMonC API

JuMonC’s API is a REST-API which has the advantage of providing a
variety of access options, even through the firewalls typically deployed
at HPC sites to protect compute nodes from direct Internet access. These
options range from simple command line tools such as ‘curl’ directly on
the login or compute nodes, to generic or specific dashboards accessed
through a protected tunnel. Depending on the compute site, access may
be simplified by using a service such as Jupyter-JSC [29], which runs
on the HPC system but allows access from browsers directly over the
Internet.

JuMonC ’s REST-API follows the standards for REST-API’s, so it is
stateless and can be setup to deliver its data over either http or https.
This means that each path can be accessed independently of all other
paths, passing arguments and then retrieving the appropriate result.
The only state that can be used is a login functionality, which eliminates
the need to send the access token on each access and instead validates
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against the cookie set at login. This is a convenience feature, everything
can still be accessed without using the login by simply adding the token
to the arguments for each REST-API call that requires authentication.

Also, all the functionality of JuMonC can be found by following the
links, as JuMonC is self-describing. The REST-API is a hierarchical tree
structure, where each branch contains links to other branches or leaves
that contain the actual functionality. This follows a general structure
where each branch has a description, possible parameters, and the
path for any direct links from that branch. The JSON description of
all links uses the same schema to allow automatic discovery of links
and the parameters needed for those links. The monitoring functionality
provided by JuMonC is organized by hardware component, each with
two sub-branches, one for status and one for configuration information.
Configuration refers to values that are static during a running job, such
as the total amount of system memory available. Status information
refers to values that are expected to change during the runtime of the
job, such as the amount of system memory currently in use. All status
information is cached by JuMonC and can be retrieved later using the
REST-API.

JuMonC provides a REST-API that can, in principle, be accessed
from anywhere. Therefore, there are security considerations to prevent
accidental or malicious access by unauthorized parties. As a first level
of control, JuMonC requires access to it’s REST-API to be token authen-
ticated. All communication to JuMonC ’s main functionality requires a
token to validate itself. To allow limited access, JuMonC knows several
token levels, restricting some functionality to higher access tokens. The
simplest token allows access only to links that provide no data and
are therefore fast to execute, and only provides a way to explore the
available functionality from the descriptions for all links, without the
ability to execute any of that functionality. The next level of access then
allows you to retrieve information from the cache, i.e., the ability to
see the results of other users’ queries, without the ability to trigger any
data collection. In total, there are five access levels by default, but for
even finer granularity, plugins can also introduce their own levels that
fit in between.

The security concept allows granular sharing of access to the data
and functionality provided by JuMonC, so that researchers can collabo-
rate without giving away full access. By default, a token for each level is
generated at startup and can be found on JuMonC’s stdout. Additional
tokens can be set at startup or using JuMonC’s initialization file.

As an additional security measure, JuMonC supports the use of SSL
for use cases where the network between the communication partners
is not trusted. SSL support is implemented in two ways, either using
an ad-hoc certificate generated by JuMonC at startup that must be
accepted by the user, or using a supplied certificate that can be used
by JuMonC.

In addition, JuMonC can be set to only accept network connections
on a specific network interface, with the most restrictive version limit-
ing it to localhost access, i. e., only accepting access from the same host
running JuMonC.

For better automated parsing of REST-API results, JuMonC includes
a unified command to request a JSON schema describing the usual
data fields present. While this is an optional feature, and therefore may
not be present for all plugins, when present it facilitates data usage
by automated programs by adding context and error checking capabil-
ities to the normal data responses. This allows automatic checks for
completeness, validity range, and useful descriptions for automatically
generated plots.

4.4. Deployment

Since the goal is for JuMonC to be run by the user, it is important
that it is easy to deploy. Therefore, it is provided as a pip package,
which makes it easy to install and ensures that all dependencies are
installed. Since JuMonC also has optional dependencies (cf. Section 4.5)
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Table 1
Mandatory dependencies needed to run JuMonC.

Dependency Functionality

Runs JuMonC

Node-to-node communication
Manages REST-API

Allows cookie based login
Enables a SQL based cache
Manages plugin extensions
Only needed in python < 3.9
to allow newer python
functionality

At least python3.6
mpidpy [30,31]

Flask [32,33]
Flask-Login [34]
Flask-SQLAlchemy [35]
Pluggy [36]
Typing-extensions [37]

Table 2
Optional dependencies for additional functionality in JuMonC.

Dependency Functionality

pynvml [38]
psutil [39]
pyOpenSSL [40]

Monitoring for NVIDA GPUs
Monitoring for I/0, main memory and CPU
SSL encrypted REST-API access

to enable some of the features, pips’ mechanism for extras can be used
to automatically install all dependencies for the required features.

JuMonC allows extensions in the form of plugins, for user-specific
functionality that can be targeted to a specific simulation. These plugins
can be provided in two different ways, either as a Python file to
be loaded by JuMonC at startup, or by setting a correct entry point
so that JuMonC is able to find the plugin automatically at startup.
Setting a correct entry point allows plugins to be installed using pip
and then made available via JuMonC’s REST-API without any further
configuration.

For data persistence, JuMonC comes with an internal database that
logs the information it retrieves. The information of cached results
can be accessed through the REST-API. It is also supported to start
JuMonC with an old database to access and compare with older sim-
ulation runs. The database is also available to plugins so that these
results can be stored along with all other information. For the basic
functionality of JuMonC, only dynamically changing data is added
to the database, static information like the maximum memory is not
added.

4.5. Dependencies

JuMonC depends on other common libraries. Some dependencies
are mandatory and others allow additional functionality. These depen-
dencies are handled by pip dependency management, making this a
simple process for users, only mpi4py needs a system, where an MPI
installation is present. The mandatory and optional dependencies are
summarized in Tables 1 and 2.

4.6. Automatic testing

To increase user confidence in the ongoing development of JuMonC,
automated testing is included. These tests start with static analysis
to ensure coding standards and correct variable typing, and look for
security vulnerabilities. Further tests include unit tests and finally
JuMonC is executed and responses for all REST-API paths are tested.
Finally, JuMonC is bundled and tested for different Python versions to
ensure compatibility with older Python versions.

4.7. Latency

JuMonC should run in the background with minimal resource usage,
especially when not needed. Since some MPI implementations, espe-
cially when used with mpi4py, continuously check for new messages,
causing additional CPU load, JuMonC uses non-blocking MPI commu-
nication. This allows fine-grained control over the behavior between
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checks. In the case of JuMonC, this means inserting a sleep between
checks to free up processor resources. Since this also increases latency
for JuMonC’s REST-API responses that require data from other nodes,
the default sleep timer of one ms can be configured by users to suit
their needs. The average increase in latency Ar, depends on the sleep
time 7, and the execution time of JuMonC’s functionality 7,. To allow
each task to run independently of other concurrent tasks, there are two
command broadcasts for each functionality. The first one to trigger the
execution and the second one to trigger the reporting of the results.
Assuming a random access time for the REST-API, waiting on average
half the wait time is expected for the first access. Depending on the
configured sleep time and the access duration, there are two extreme
cases for the latency increase. Either ¢, is much larger than ¢, where
the average latency increase is given by

te>>tS:E:2~%-te:te (€8]
or vice versa with the average latency increase as

— 1 3
tS>>te.AtL=te+§~te=§~le. 2)

4.8. Data granularity

JuMonC allows data collection on demand, and there are no specific
limits on the data collection rates enforced by JuMonC. Therefore,
multiple data points per second are possible, but increase the possible
performance impact. No limit is enforced. However, there is a limit
based on the internal blocking of MPI communication. This limitation
depends in part on the size of the job allocation, but even for large
allocations, 10 requests per second are possible.

5. Applications

To further evaluate JuMonC, use cases are needed. This section
describes two use cases, a CFD application computed with nekRS and an
Earth experiment simulated with ICON. The coupling of JuMonC with
LLview is also discussed. nekRS, ICON, and LLview will be important
contributors to beyond the state-of-the-art applications planned to be
run on the first European exascale supercomputer JUPITER, which is
planned for 2025 and will be hosted at JSC. Both nekRS and ICON
are part of the JuBench benchmark suite [41] that was used for the
JUPITER procurement.

5.1. JuMonC integration into use cases

This section briefly describes the two use cases used to measure
performance and demonstrate JuMonC.

5.1.1. Mesoscale convection with nekRS

CFD is a very common application for supercomputers with exam-
ples ranging from atmospheric boundary layers and geological flows
to energy devices. A particular example is to better understand natural
convection in turbulent conditions, characterized by a high Reynolds
number (Re), e. g., corresponding to a low Prandtl number (Pr) and a
high Rayleigh number (Ra) [42-44]. Due to the resulting scales and
driving mechanisms, one resulting regime is called mesoscale convec-
tion. High Re simulations result in very large simulations due to the
large scale separation, making it a good example case for JuMonC and
exascale workflows in general. The code used here is nekRS that
features an optimized GPU backend, as well as a CPU backend.

nekRS is a high-order spectral element solver that uses the same in-
put and output mechanism as nek5000. The difference is that nekRS is
a GPU-enabled code, using occa [45] as a layer to port to different
architectures. It allows customization through the use of user-defined
functions that can also be executed as GPU kernels on the GPU [7].

The physical conditions are set in the simulation using the di-
mensionless numbers Pr and Ra, where Pr is the ratio of momentum
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Fig. 4. A slice at half height for natural convection at Ra = 107 and Pr = 0.7, showing
the normalized temperature distribution with visible superstructures.

diffusivity to thermal diffusivity [46]. Ra is by definition the ratio of
the timescales for diffusive heat transport to convective heat transport
at a given velocity [47].

The Re starts with low values because it depends on the velocity,
which is initialized to zero. Only the temperature is initialized as a
gradient from top to bottom. Periodic boundary conditions (BC) are
used in the width and length directions. The height BCs use no-slip
conditions for the velocity and Dirichlet conditions for the temperature.
Fig. 4 shows the temperature field for a slice at half height of the sim-
ulated volume after thermalization. Superstructures for the convective
heat plumes are clearly visible.

To integrate data from nekRS into JuMonC, a separate plugin [48]
has been developed that can be easily installed using pip, and is then
automatically used by JuMonC. This plugin is able to access data from
nekRS’s logfile, for static information like the nekRS version used.
Dynamic information that can then be used via JuMonC’s REST-API
includes simulation time, time step length, time steps, and Courant
number (CFL number). The steering component depends on code in-
tegration with nekRS and, e.g., allows to trigger additional writes of
the simulation data and enables additional statistics. Another usage
example is to change the in-situ data frequency (cf. Section 6).

5.1.2. Earth experiments with ICON

As an additional simulation code, ICON (Icosahedral Nonhydro-
static) [49,50] was used. This is a weather/climate modeling code that
uses an icosahedral grid and numerically calculates separate modeling
levels for different time and length scales. The example simulation
starts with a measured world wide weather data and goes forward in
the time from here. This allows detailed results to be viewed for many
physical quantities. One example is the surface air pressure, which can
be seen in Fig. 5 and, due to pressure differences due to altitude, allows
an easy geographical orientation due to the visible continents.

5.2. Using JuMonC with LLview

LLview is the monitor tool of choice at JSC. It provides users with
easy access to important hardware information, such as memory or
GPU usage, and generates detailed job reports after each job has been
completed. Coupling JuMonC and LLview is therefore a benefit for both
tools and is described in more detail below.

To make the metrics collected by JuMonC available automatically,
the existing LLview infrastructure is used to add new graphs to the
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Fig. 5. ICON’s simulated surface air pressure.

reports of jobs using JuMonC. This is achieved by adding new modules
to each of the programs: a plugin for JuMonC, where the authentication
and default settings are set, and an adapter for LLview, which is used
to query and parse the data.

Simply put, LLview and JuMonC complement each other, because
LLview lacks the ability to access user/simulation specific data to
add to its plots, while JuMonC has no plotting utilities included, and
LLview offers such a choice, while being able to add data locked behind
admin access, which JuMonC lacks.

5.2.1. LLview plugin for JuMonC

To allow a better and more consistent interaction between Ju-
MonC and LLview, an additional plugin [51] has been created. It is
mainly designed to be a single entry point where LLview can connect to
the variable configurations of different JuMonC plugins. The plugin is
able to automatically gather information about which REST-API paths
provide information that can be used by LLview. Although the JuMonC-
LLview interaction is automatically configured, the user can customize
it via a configuration file or job startup parameters.

An important feature of the plugin is to provide secure access to
the metrics for LLview only. Because JuMonC runs as a user process
and accesses the user data (e. g., to retrieve information from logfiles),
there is no direct way to give LLview— and LLview only — a unique
access token. To obtain the token, LLview uses secure public/private
key authentication with JuMonC. The procedure is as follows:

1. LLview requests a random message and the source node from
JuMonC’s REST-API;

2. To avoid a ‘man-in-the-middle’ type of attack, the node is con-
firmed to be the one, where the job is running (from SLURM
output);

3. LLview signs the message (including the node name) with its
private key and sends it back to JuMonC;

4. JuMonC verifies that the message was signed by LLview using
the public key;

5. JuMonC returns a token for further access.

The current implementation uses the Edwards-curve Digital Signa-
ture Algorithm (EdDSA) [52] for keys and also allows LLview to be
granted a limited token.

After receiving the token, LLview is able to use JuMonC’s REST-API
to query all paths that are accessible with that token and proceed to
add specific simulation data to the job report.

5.2.2. JuMonC adapter for LLview

The new JuMonC adapter has been added to the LLview workflow,
which collects data by running every minute. The first step is to get the
job ID of all jobs running on the monitored system, which is done using
the data from the base Slurm adapter. The current timestamp is also
stored. Slurm is also currently used to provide LLview with additional
information about the current JuMonC instance: The adapter checks
whether JuMonC is running or has a custom configuration set in the
—--comment field. If JuMonC is active for a given job, the following
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Fig. 6. Interplay of LLview and JuMonC. Data is requested from the JuMonC adapter
(component of LLview) to the plugins, processed, and added to the job reports.

information is stored: the node on which the job is running, as well as
any custom port and path.

Using the information collected for all jobs running JuMonC, LLview
proceeds to query the available metrics as shown in Fig. 6. To be able
to perform further queries, the authentication process to request a valid
token (as described in Section 5.2.1) is performed first. In possession
of the token, LLview asks to loop through the available paths or use
a custom path. Each of the available paths is contacted to collect all
metrics and their provided properties (such as name, description, type,
minimum or maximum, etc.) using the description JSON schema if
available.

The last step of the JuMonC adapter is to create an internal file that
is further processed and stored in the database. To avoid a constantly
growing database, the metrics are stored with generic names associated
with their properties, and a maximum number of metrics can be set in
the configuration of LLview (set to 10 by default).

5.2.3. Presentation

After the metrics are collected and added to the database, LLview
can generate new graphs that are included in the job reports generated
internally for all jobs running on the system. The reports are provided
in PDF and HTML formats, the latter being the preferred format because
it uses Plotly [53] for interactive graphs. In this case, the users can
select which of the collected metrics are plotted on each of the axes
(cf. Section 6).

5.2.4. Perspectives

JuMonC proved to be an extremely useful tool for getting data
from the user space into the LLview database, which helps in the
development of future LLview extensions. For example, other plugins
could provide detailed metrics from instrumented jobs that are not
available in the standard LLview reports. These could then be extended
to provide all the collected information in a single place. Another
possible use is to define ‘calibration’ jobs, where predefined metrics are
set and then compared to those obtained by the monitoring tools.

With LLview as a standard tool for monitoring and job reporting
at JSC and the customizability of JuMonC, important foundations have
been laid to support a wide range of applications on the future exascale
supercomputer JUPITER.

6. Results and discussion

This section presents and discusses the qualitative and quantitative
results of JuMonC.
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Fig. 7. Graph on the job report of LLview with metrics obtained from nekRS via
JuMonC. The user can select the desired metrics on both axes via drop-down boxes.

6.1. Workflows

JuMonC with its lightweight, flexible, secure, and user-friendly
design was developed to support exascale-enabled workflows and data
usage at scale. It enables interactive data collection, system usage
information, and other simulation-specific data. With JuMonC, it is also
possible to use plugins to extend simulations with very specific code
that allows the use of JuMonC’s control capabilities. This allows a user
not only to monitor his simulations for problems, but also to provide
and use specific problem solutions.

The data from JuMonC can easily be used in several cases, one of
which is LLview a job reporting tool running on Jiilich Supercomputing
Centre. This closes the circle from a new on-demand approach to
monitoring simulations and systems from the user space, with access
to simulation-specific data, to a data source for established job moni-
toring. For LLview, this is a way to access simulation-specific data that
is transparent to the user and easy to configure.

With simulation-specific data available in LLview, it is possible
to identify potential problems with a running nekRS simulation. One
such problem can be seen in Fig. 7, which shows the time history
of the nekRS simulation, plotted against the system clock time. In
this case, a numerical artifact caused nekRS to keep reducing its time
step length, there is no longer a visible change in the progress. Using
only standard system metrics, this problem will not be visible, because
nekRS will still work correctly and perform calculations that show a
normal system load. If the user notices this, the simulation can be
aborted or other actions can be taken, such as triggering a full data
dump (using JuMonC) for more in-depth analysis without wasting more
system resources before nekRS slows down even more and aborts itself.

An important design constraint for JuMonC was the goal to have
minimal impact on the actual simulation, so that the monitoring does
not affect the simulation performance. Of course, this can only be
true for the actual monitoring, if it is used for control purposes, it
depends on the triggered functionality if there will be an impact, e. g.,
a complete data dump will take some time.

6.2. Measurements

The performance and usability of JuMonC is approached quantita-
tively next. Two different application codes are considered. Further-
more, measurements on CPU and GPU backends are shown. To avoid
unnecessary length, measurements are presented for nekRS with its
CPU backend and ICON running on GPUs. The measurements were per-
formed on JURECA-DC [54]. In addition, the next section demonstrates
JuMonC’s steering for an even larger nekRS setup computed on up to
3360 GPUs on JUWELS Booster [55] in the next section.

The nekRS tests on JURECA-DC used a weakly scaling workload
and all available CPU cores, overlapping with the CPU cores used for
JuMonC. The performance impact of solving the test case on the same
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Fig. 8. Performance impact by JuMonC on nekRS running on the CPU backend and
using all CPU cores and ICON running on GPUs. Performance is compared as the
average of 3 runs, with and without JuMonC running. Using different workloads for
JuMonC, with zero requests, or one and three requests per second or ten requests per
second for ICON.

node allocations with and without JuMonC was compared. Because re-
sources are shared with other users, such as the network, there is some
variation between runs. To reduce the impact of this variation, three
runs were used for each configuration. This test uses data collected from
all nodes, so JuMonC must use its internal communication to all nodes
for each of these queries. To better understand the impact, JuMonC was
used with different query loads, just running in the background with
no active usage, one query per second, or three queries per second.
The overall results show a very small impact with no visible scaling
behavior for the impact, as can be seen in Fig. 8. The overall average
for all sizes shows an impact of less than 0.1% in the no query case,
and using one query per second and three queries per second results in
an impact of 0.14%.

As an additional test, the performance impact of JuMonC on ICON
running on the GPUs was tested. Since in this case CPU resources
are unused and available for JuMonC, the combination of ICON with
JuMonC was tested with ten queries per second and the results were
added to Fig. 8. Even with ten queries with data gathering on all nodes
of the job, the average of the impact on total execution time for all
ICON cases remains below 0.3%, without showing any negative scaling
behavior. Another important measure is the memory footprint. It is
plotted for the ICON application in Fig. 9 as a function of the number
of nodes used. The memory footprint increases with more nodes, due
to the larger amount of collected data that scales with the increasing
number of MPI processes. Overall, the total memory usage of JuMonC is
not critical.

For the exascale usability of JuMonC, the scaling behavior of the
query latency is also important. Since this is influenced by the waiting
time between MPI calls to JuMonC, these tests were done with the
default value of 5ms. This value can be changed according to the
specific use case to achieve the required performance. The total latency
can be seen in Fig. 10 and scales roughly with 5 ms per each doubling
of the node count, that is needed due to the waiting time. So this is an
important value to tune the performance according to your simulation
and needs. To increase the responsiveness of JuMonC’s API, this value
can be changed during the runtime of JuMonC through the REST-API,
to temporarily allow a larger impact on simulation performance in
exchange for lower latency.

6.3. Steering

A natural convection case with Ra = 10! and Pr = 0.7 is used to
demonstrate a steering use case with JuMonC. Due to the resulting
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Fig. 9. Memory need of JuMonC measured for different scales, using ICON as
simulation code to run parallel to JuMonC. The measurement is the maximum resident
size on any one node, as reported by ‘ps’, showing how much memory is allocated for
JuMonC.
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Fig. 10. Latency measured for requests from JuMonC that require MPI communication
for different scales, using nekRS as simulation code to run parallel to JuMonC.

high Re, this case was run on 3360 GPUs on JUWELS Booster. Since
JUWELS Booster has a total of 3744 GPUs, this is large enough to be
considered a ‘full system’ run, considering that usually a fraction of
GPUs are not available to users for various reasons, such as hardware
problems. A complex in-situ/in-transit visualization workflow was ap-
plied to allow complex visualization of the enormous amount of data
in parallel with the simulation run. One technical difficulty was to
find the optimal operating point, which was defined by the number
of GPUs for the simulation, the available GPUs for the visualization,
and an optimal visualization interval. Due to the size of the simu-
lation and the limited availability of supercomputers for simulations
of such a size, JuMonC was used to monitor the status, in particular
the average GPU utilization. Additionally, the steering function was
used to allocate GPUs for either simulation or visualization to achieve
optimal performance. This is complicated by the fact that the optimum
is not static. Turbulence is only statically stationary, so the numerical
complexity can also vary between individual time steps. For example
with increasing simulation runtime, the solution time per time step can
increase, so that a previously determined optimal operating point is no
longer optimal in relation to the visualization interval.

The use case was simulated twice for a runtime of 6 h with an
identical starting point. Checkpointing was performed at equal intervals
for both cases after two dimensionless time units. Overall, it was pos-
sible to increase the average GPU utilization from 76.2% to 80.5% by
monitoring and intervening in the simulation with JuMonC in parallel.
This already includes the overhead caused by JuMonC, which was
0.2%.
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Fig. 12. Example visualization of data collected with JuMonC, here the total network
activity over time. Data is gathered in a Juypter notebook using requests and plotted
using matplotlib [58].

6.4. Plugins

JuMonC can be used as a data source for several different monitor-
ing tasks. Two examples of use with dashboards are shown in Figs. 11
and 12. These are based on Jupyter notebooks that can be run as
either a notebook or a dashboard, and are available as example in the
JuMonC repository. The first has several components and is very similar
to LLview job reports, with the main difference that JuMonC only
provides the data on demand, but therefore with a potentially much
higher refresh rate. The main area is used to showcase a color-coded
view of GPU power consumption, in this case, showing all nodes for
multiple timesteps. On the top is a plot of the node average over time,
while on the right side is a plot of the time average over the nodes. The
other example uses JuMonC to periodically update the total network
traffic report for all nodes.

While JuMonC’s approach of running in userspace under user con-
trol has many advantages for code portability and user extensibility, it
also has a drawback. JuMonC is limited to the data available to the user.
Therefore, if HPC sites limit the performance data available to users,
JuMonC will not be able to access that data, while a more integrated,



C. Witzler et al.

site-specific tool might get exceptions. If the data is available, but in a
non-standard way, this reduces the portability of JuMonC, but this can
be reduced by using custom site-specific JuMonC plugins.

The usability of plugins is one of the major advantages of JuMonC,
which is extensible with custom simulation and user-specific function-
ality. These can use the basic functionality provided for integration
into the REST API, communication and plug into the configuration
mechanism of JuMonC. To allow easy customization, development
and sharing of plugins, JuMonC is able to automatically detect cor-
rectly configured plugins and use the path to the plugin as part of its
configuration.

7. Conclusions and outlook

JuMonC is a tool for monitoring and steering of HPC simulations
at scale. This paper demonstrates the use of JuMonC with the sim-
ulation codes nekRS and ICON, and how it interoperates with other
monitoring tools such as LLview. Monitoring and influencing code
evaluation through steering allows for more flexible and targeted use
of HPC resources, preventing wasted computing time and potentially
leading to better scientific results. This functionality is provided by
JuMonC through a REST-API that allows flexible user access through
a variety of different tools, with minimal performance impact on the
simulation, further reduced by relying mostly on an on-demand ap-
proach. Performance and memory measurements show that JuMonC is
suitable to be employed in large use cases and even towards exascale
while providing a wide range of functionality.

An important point for future work is to extend and diversify the
plugins, for example to increase the monitoring capabilities. Possi-
ble plugin extensions might include collecting more CPU hardware
counters using libraries like PAPI [59,60] and LIKWID [61,62], both
of which are accessible via Python bindings (python_papi [63] and
pylikwid [64]). And while there is a plethora of data available for
NVIDIA GPUs through the current implementation of GPU monitoring
based on NVML [65], there is currently no support for monitoring
non-NVIDIA GPUs, such as AMD and Intel.

Additional plugin support for other simulation codes is also needed,
both to broaden the potential user base and to show what is possi-
ble with JuMonC. These plugins would also serve as a good starting
point for users who want to develop their own plugins. In this sense,
JuMonC could also be extended to provide broader support for data
collection options, not just node-specific data or data from all nodes,
but ready-to-use functionality through plugins for averaging, median,
or obtaining the critical points and extrema.

Even for the particular example discussed in this paper, which
combines JuMonC with nekRS/ICON and LLview, other improvements
are also possible. For example, in the case of the nekRS plugin, these
could include improvements to make the nekRS performance informa-
tion available in the plugin, and thus in JuMonC’s REST-API. Another
possible improvement would be more advanced data analysis, but this
might lead to a simulation and case-specific plugin. For the JuMonC-
LLview interaction, one possible improvement would be an automatic
way to inform LLview of a running JuMonC instance, which is done
automatically without the need for the user to specify that it is running
in a SLURM comment field.

In summary, although JuMonC is a newborn in the monitoring tools
field, the existing examples already demonstrate some of its current
and future uses. It has been designed to provide not only monitoring
capabilities directly to the user, but also control knobs to steer his
simulations. Because it is easy to install and extend, it has the potential
to become a widely used tool in the HPC community, aided by its open
source nature.
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