001033637 001__ 1033637
001033637 005__ 20241214210606.0
001033637 0247_ $$2doi$$a10.48550/ARXIV.2411.08925
001033637 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06509
001033637 037__ $$aFZJ-2024-06509
001033637 041__ $$aEnglish
001033637 1001_ $$0P:(DE-Juel1)188104$$aBuffat, Jim$$b0$$eCorresponding author$$ufzj
001033637 245__ $$aRetrieval of sun-induced plant fluorescence in the O$_2$-A absorption band from DESIS imagery
001033637 260__ $$barXiv$$c2024
001033637 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1734166697_310
001033637 3367_ $$2ORCID$$aWORKING_PAPER
001033637 3367_ $$028$$2EndNote$$aElectronic Article
001033637 3367_ $$2DRIVER$$apreprint
001033637 3367_ $$2BibTeX$$aARTICLE
001033637 3367_ $$2DataCite$$aOutput Types/Working Paper
001033637 520__ $$aWe provide the first method allowing to retrieve spaceborne SIF maps at 30 m ground resolution with a strong correlation ($r^2=0.6$) to high-quality airborne estimates of sun-induced fluorescence (SIF). SIF estimates can provide explanatory information for many tasks related to agricultural management and physiological studies. While SIF products from airborne platforms are accurate and spatially well resolved, the data acquisition of such products remains science-oriented and limited to temporally constrained campaigns. Spaceborne SIF products on the other hand are available globally with often sufficient revisit times. However, the spatial resolution of spaceborne SIF products is too small for agricultural applications. In view of ESA's upcoming FLEX mission we develop a method for SIF retrieval in the O$_2$-A band of hyperspectral DESIS imagery to provide first insights for spaceborne SIF retrieval at high spatial resolution. To this end, we train a simulation-based self-supervised network with a novel perturbation based regularizer and test performance improvements under additional supervised regularization of atmospheric variable prediction. In a validation study with corresponding HyPlant derived SIF estimates at 740 nm we find that our model reaches a mean absolute difference of 0.78 mW / nm / sr / m$^2$.
001033637 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001033637 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x1
001033637 588__ $$aDataset connected to DataCite
001033637 650_7 $$2Other$$aComputer Vision and Pattern Recognition (cs.CV)
001033637 650_7 $$2Other$$aArtificial Intelligence (cs.AI)
001033637 650_7 $$2Other$$aGeophysics (physics.geo-ph)
001033637 650_7 $$2Other$$aFOS: Computer and information sciences
001033637 650_7 $$2Other$$aFOS: Physical sciences
001033637 7001_ $$0P:(DE-HGF)0$$aPato, Miguel$$b1
001033637 7001_ $$0P:(DE-HGF)0$$aAlonso, Kevin$$b2
001033637 7001_ $$0P:(DE-HGF)0$$aAuer, Stefan$$b3
001033637 7001_ $$0P:(DE-HGF)0$$aCarmona, Emiliano$$b4
001033637 7001_ $$0P:(DE-HGF)0$$aMaier, Stefan$$b5
001033637 7001_ $$0P:(DE-HGF)0$$aMüller, Rupert$$b6
001033637 7001_ $$0P:(DE-Juel1)162306$$aRademske, Patrick$$b7$$ufzj
001033637 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b8$$ufzj
001033637 7001_ $$0P:(DE-Juel1)129394$$aScharr, Hanno$$b9$$ufzj
001033637 773__ $$a10.48550/ARXIV.2411.08925
001033637 8564_ $$uhttps://juser.fz-juelich.de/record/1033637/files/main_document.pdf$$yOpenAccess
001033637 909CO $$ooai:juser.fz-juelich.de:1033637$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001033637 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188104$$aForschungszentrum Jülich$$b0$$kFZJ
001033637 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b1
001033637 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Starion Group c/o ESA$$b2
001033637 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b3
001033637 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b4
001033637 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b5
001033637 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b6
001033637 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162306$$aForschungszentrum Jülich$$b7$$kFZJ
001033637 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b8$$kFZJ
001033637 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129394$$aForschungszentrum Jülich$$b9$$kFZJ
001033637 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001033637 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
001033637 9141_ $$y2024
001033637 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001033637 920__ $$lyes
001033637 9201_ $$0I:(DE-Juel1)IAS-8-20210421$$kIAS-8$$lDatenanalyse und Maschinenlernen$$x0
001033637 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
001033637 980__ $$apreprint
001033637 980__ $$aVDB
001033637 980__ $$aUNRESTRICTED
001033637 980__ $$aI:(DE-Juel1)IAS-8-20210421
001033637 980__ $$aI:(DE-Juel1)IBG-2-20101118
001033637 9801_ $$aFullTexts