001     1033637
005     20241214210606.0
024 7 _ |a 10.48550/ARXIV.2411.08925
|2 doi
024 7 _ |a 10.34734/FZJ-2024-06509
|2 datacite_doi
037 _ _ |a FZJ-2024-06509
041 _ _ |a English
100 1 _ |a Buffat, Jim
|0 P:(DE-Juel1)188104
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Retrieval of sun-induced plant fluorescence in the O$_2$-A absorption band from DESIS imagery
260 _ _ |c 2024
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1734166697_310
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a We provide the first method allowing to retrieve spaceborne SIF maps at 30 m ground resolution with a strong correlation ($r^2=0.6$) to high-quality airborne estimates of sun-induced fluorescence (SIF). SIF estimates can provide explanatory information for many tasks related to agricultural management and physiological studies. While SIF products from airborne platforms are accurate and spatially well resolved, the data acquisition of such products remains science-oriented and limited to temporally constrained campaigns. Spaceborne SIF products on the other hand are available globally with often sufficient revisit times. However, the spatial resolution of spaceborne SIF products is too small for agricultural applications. In view of ESA's upcoming FLEX mission we develop a method for SIF retrieval in the O$_2$-A band of hyperspectral DESIS imagery to provide first insights for spaceborne SIF retrieval at high spatial resolution. To this end, we train a simulation-based self-supervised network with a novel perturbation based regularizer and test performance improvements under additional supervised regularization of atmospheric variable prediction. In a validation study with corresponding HyPlant derived SIF estimates at 740 nm we find that our model reaches a mean absolute difference of 0.78 mW / nm / sr / m$^2$.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 1
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Computer Vision and Pattern Recognition (cs.CV)
|2 Other
650 _ 7 |a Artificial Intelligence (cs.AI)
|2 Other
650 _ 7 |a Geophysics (physics.geo-ph)
|2 Other
650 _ 7 |a FOS: Computer and information sciences
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Pato, Miguel
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Alonso, Kevin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Auer, Stefan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Carmona, Emiliano
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Maier, Stefan
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Müller, Rupert
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Rademske, Patrick
|0 P:(DE-Juel1)162306
|b 7
|u fzj
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 8
|u fzj
700 1 _ |a Scharr, Hanno
|0 P:(DE-Juel1)129394
|b 9
|u fzj
773 _ _ |a 10.48550/ARXIV.2411.08925
856 4 _ |u https://juser.fz-juelich.de/record/1033637/files/main_document.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1033637
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188104
910 1 _ |a DLR
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Starion Group c/o ESA
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a DLR
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a DLR
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a DLR
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a DLR
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)162306
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129388
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129394
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 1
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-8-20210421
|k IAS-8
|l Datenanalyse und Maschinenlernen
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 1
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-8-20210421
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21