001033638 001__ 1033638
001033638 005__ 20250203133222.0
001033638 0247_ $$2doi$$a10.1039/D4CC02856B
001033638 0247_ $$2ISSN$$a0022-4936
001033638 0247_ $$2ISSN$$a0009-241X
001033638 0247_ $$2ISSN$$a1359-7345
001033638 0247_ $$2ISSN$$a1364-548X
001033638 0247_ $$2ISSN$$a2050-5620
001033638 0247_ $$2ISSN$$a2050-5639
001033638 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06510
001033638 0247_ $$2pmid$$a39479923
001033638 0247_ $$2WOS$$aWOS:001345083500001
001033638 037__ $$aFZJ-2024-06510
001033638 041__ $$aEnglish
001033638 082__ $$a540
001033638 1001_ $$0P:(DE-Juel1)189064$$aSchäffler, Moritz$$b0$$ufzj
001033638 245__ $$aThe energy landscape of Aβ 42 : a funnel to disorder for the monomer becomes a folding funnel for self-assembly
001033638 260__ $$aCambridge$$bSoc.$$c2024
001033638 3367_ $$2DRIVER$$aarticle
001033638 3367_ $$2DataCite$$aOutput Types/Journal article
001033638 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734168686_20064
001033638 3367_ $$2BibTeX$$aARTICLE
001033638 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001033638 3367_ $$00$$2EndNote$$aJournal Article
001033638 520__ $$aThe aggregation of amyloid-β (Aβ) peptides, particularly Aβ1–42, plays a key role in Alzheimer's disease pathogenesis. In this study, we investigate how dimerisation transforms the free energy surface (FES) of the Aβ1–42 monomer when it interacts with another Aβ1–42 peptide. We find that the monomer FES is a structurally inverted funnel with a disordered state at the global minimum. However, in the presence of a second Aβ1–42 peptide, the landscape becomes a folding funnel, leading to a β-hairpin state. Using first passage time analysis, we analyse the pathway for the transition from disordered to the β-hairpin state, which highlights the initial formation of a D23–K28 salt bridge as the driving force, together with hydrophobic contacts.
001033638 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001033638 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001033638 7001_ $$0P:(DE-HGF)0$$aWales, David J.$$b1
001033638 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b2$$eCorresponding author
001033638 773__ $$0PERI:(DE-600)1472881-3$$a10.1039/D4CC02856B$$gVol. 60, no. 92, p. 13574 - 13577$$n92$$p13574 - 13577$$tChemical communications$$v60$$x0022-4936$$y2024
001033638 8564_ $$uhttps://juser.fz-juelich.de/record/1033638/files/The%20energy%20landscape%20of%20A%CE%B242_a%20funnel%20to%20disorder%20for%20the%20monomer%20becomes%20a%20folding%20funnel%20for%20self-assembly.pdf$$yOpenAccess
001033638 8767_ $$d2024-11-27$$eHybrid-OA$$jPublish and Read
001033638 909CO $$ooai:juser.fz-juelich.de:1033638$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001033638 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)189064$$aForschungszentrum Jülich$$b0$$kFZJ
001033638 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b2$$kFZJ
001033638 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001033638 9141_ $$y2024
001033638 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001033638 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
001033638 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
001033638 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
001033638 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
001033638 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2023-08-29
001033638 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001033638 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2023-08-29
001033638 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-05$$wger
001033638 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-05
001033638 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM COMMUN : 2022$$d2024-12-05
001033638 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-05
001033638 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-05
001033638 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-05
001033638 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-05
001033638 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-05
001033638 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-05
001033638 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-05
001033638 920__ $$lyes
001033638 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
001033638 980__ $$ajournal
001033638 980__ $$aVDB
001033638 980__ $$aUNRESTRICTED
001033638 980__ $$aI:(DE-Juel1)IBI-7-20200312
001033638 980__ $$aAPC
001033638 9801_ $$aAPC
001033638 9801_ $$aFullTexts