001033639 001__ 1033639
001033639 005__ 20241214210606.0
001033639 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06511
001033639 037__ $$aFZJ-2024-06511
001033639 1001_ $$0P:(DE-Juel1)188104$$aBuffat, Jim$$b0$$eCorresponding author$$ufzj
001033639 1112_ $$a13th EARSeL Workshop on Imaging Spectroscopy$$cValencia$$d2024-04-16 - 2024-04-18$$gEARSeL2024$$wSpain
001033639 245__ $$aLeveraging a large-scale radiative transfer simulation for an emulator based retrieval scheme of sun-induced fluorescence in HyPlant imagery
001033639 260__ $$c2024
001033639 3367_ $$033$$2EndNote$$aConference Paper
001033639 3367_ $$2DataCite$$aOther
001033639 3367_ $$2BibTeX$$aINPROCEEDINGS
001033639 3367_ $$2DRIVER$$aconferenceObject
001033639 3367_ $$2ORCID$$aLECTURE_SPEECH
001033639 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1734082410_7858$$xAfter Call
001033639 520__ $$aThe prediction of sun-induced fluorescence (SIF) from hyperspectral radiance has been identified as a corner stone to assess plants’ photosynthetic efficiency remotely. It is widely accepted that remotely sensed SIF offers great potential for a variety of applications. To provide such estimates, top-of-canopy SIF products derived from passively sensed radiance measurements of various airborne and spaceborne sensors have been developed over the last decades. To date, however, physically based SIF retrieval schemes require a prohibitive use of computationally costly radiative transfer simulations especially when used in complex observational conditions such as in hilly terrain. In this contribution we report on our on-going work to develop a lightweight self-supervised neural network to retrieve SIF in the O$_2$-A absorption band of HyPlant acquisitions. We aim at a tight integration of a physical radiative transfer model with the network to ensure physically sound predictions by leveraging large scale simulation and emulation of HyPlant at-sensor radiance observations. We report on first results that we achieve on a dedicated data set.
001033639 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001033639 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x1
001033639 7001_ $$0P:(DE-HGF)0$$aPato, Miguel$$b1
001033639 7001_ $$0P:(DE-HGF)0$$aAuer, Stefan$$b2
001033639 7001_ $$0P:(DE-HGF)0$$aAlonso, Kevin$$b3
001033639 7001_ $$0P:(DE-HGF)0$$aCarmona, Emiliano$$b4
001033639 7001_ $$0P:(DE-HGF)0$$aMaier, Stefan$$b5
001033639 7001_ $$0P:(DE-HGF)0$$aMüller, Rupert$$b6
001033639 7001_ $$0P:(DE-Juel1)162306$$aRademske, Patrick$$b7$$ufzj
001033639 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b8$$ufzj
001033639 7001_ $$0P:(DE-Juel1)129394$$aScharr, Hanno$$b9$$ufzj
001033639 8564_ $$uhttps://juser.fz-juelich.de/record/1033639/files/Buffat_etal_abstract_earsel_2024.pdf$$yOpenAccess
001033639 909CO $$ooai:juser.fz-juelich.de:1033639$$popenaire$$popen_access$$pVDB$$pdriver
001033639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188104$$aForschungszentrum Jülich$$b0$$kFZJ
001033639 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b1
001033639 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b2
001033639 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Starion Group c/o ESA$$b3
001033639 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b4
001033639 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b5
001033639 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b6
001033639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162306$$aForschungszentrum Jülich$$b7$$kFZJ
001033639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b8$$kFZJ
001033639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129394$$aForschungszentrum Jülich$$b9$$kFZJ
001033639 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001033639 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
001033639 9141_ $$y2024
001033639 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001033639 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001033639 920__ $$lyes
001033639 9201_ $$0I:(DE-Juel1)IAS-8-20210421$$kIAS-8$$lDatenanalyse und Maschinenlernen$$x0
001033639 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
001033639 9801_ $$aFullTexts
001033639 980__ $$aconf
001033639 980__ $$aVDB
001033639 980__ $$aUNRESTRICTED
001033639 980__ $$aI:(DE-Juel1)IAS-8-20210421
001033639 980__ $$aI:(DE-Juel1)IBG-2-20101118