001033642 001__ 1033642
001033642 005__ 20241213210708.0
001033642 037__ $$aFZJ-2024-06514
001033642 041__ $$aEnglish
001033642 1001_ $$0P:(DE-Juel1)188104$$aBuffat, Jim$$b0$$eCorresponding author$$ufzj
001033642 1112_ $$a3rd WORKSHOP ON INTERNATIONAL COOPERATION IN SPACEBORNE IMAGING SPECTROSCOPY$$cNoordwijk$$d2024-11-13 - 2024-11-15$$gWICSIS 2024$$wNetherlands
001033642 245__ $$aTowards fast and sensor-independent retrieval of sun-induced fluorescence fromspaceborne hyperspectral data
001033642 260__ $$c2024
001033642 3367_ $$033$$2EndNote$$aConference Paper
001033642 3367_ $$2BibTeX$$aINPROCEEDINGS
001033642 3367_ $$2DRIVER$$aconferenceObject
001033642 3367_ $$2ORCID$$aCONFERENCE_POSTER
001033642 3367_ $$2DataCite$$aOutput Types/Conference Poster
001033642 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1734086530_7857$$xAfter Call
001033642 520__ $$aA corner stone to mapping photosynthetic dynamics efficiently over large areas of land is theretrieval of sun-induced fluorescence (SIF) from passive remote sensing data. In this contributionwe present a novel method to retrieve SIF from hyperspectral imagery that tightly integratesradiative transfer simulations and self-supervised neural network training. Differently to otherphysically constrained retrieval methods that optimize the parameters to a radiative transfermodel (RTM), it reduces the prohibitive computational cost of a physical model deployed tocontinuous data streams. To achieve this, it couples an emulator of large-scale radiative transfersimulations with a lightweight encoder-decoder neural network architecture and is trained byoptimizing a constraint based loss formulation.This method was developed and tested in the spectral region around the O2-A absorption bandon high-quality data acquired by the HyPlant sensor, the airborne demonstrator sensor for ESA’supcoming Earth Explorer satellite mission FLEX that aims to provide global hyperspectral imageryfor SIF retrieval. In a validation study with in-situ SIF measurements we find better performancethan the traditional Spectral Fitting Method (Cogliati et al. 2019). Furthermore, an adapted versionof our approach yields consistent SIF estimates on hyperspectral data of the spaceborne DESISsensor onboard the International Space Station (ISS). This result is encouraging since DESIS onlyprovides spectrally low-resolved imagery (2.55 nm SSD, 3.5 nm FWHM) compared to HyPlant(0.11 nm SSD, 0.25 nm FWHM). In a unique data set consisting of quasi-simultaneous, spatiallymatching DESIS and HyPlant acquisitions, the DESIS SIF estimates achieve a mean absolutedifference of less than 0.5 mW nm-1 sr-1 m-2 with respect to HyPlant derived estimates.Furthermore, the method yields SIF estimates that align well with the equally ISS-based OCO-3SIF product.The proposed methodology could benefit research in computationally efficient full-spectrum SIFprediction from FLEX data. While our method has been tested only in the O2-A absorption bandof HyPlant and DESIS acquisitions, principally it can be adapted in a straightforward fashion forretrieval in other spectral regions and in data from different sensors. Future work will thus includerecently published simulated FLEX imagery and our simulation tool developed for DESIS SIFprediction to gauge the method’s applicability in FLEX-like data.
001033642 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001033642 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x1
001033642 7001_ $$0P:(DE-HGF)0$$aPato, Miguel$$b1
001033642 7001_ $$0P:(DE-HGF)0$$aAuer, Stefan$$b2
001033642 7001_ $$0P:(DE-HGF)0$$aAlonso, Kevin$$b3
001033642 7001_ $$0P:(DE-HGF)0$$aCarmona, Emiliano$$b4
001033642 7001_ $$0P:(DE-HGF)0$$aMaier, Stefan$$b5
001033642 7001_ $$0P:(DE-HGF)0$$aMüller, Rupert$$b6
001033642 7001_ $$0P:(DE-Juel1)162306$$aRademske, Patrick$$b7$$ufzj
001033642 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b8$$ufzj
001033642 7001_ $$0P:(DE-Juel1)129394$$aScharr, Hanno$$b9$$ufzj
001033642 909CO $$ooai:juser.fz-juelich.de:1033642$$pVDB
001033642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188104$$aForschungszentrum Jülich$$b0$$kFZJ
001033642 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b1
001033642 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b2
001033642 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Starion Group c/o ESA$$b3
001033642 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b4
001033642 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b5
001033642 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b6
001033642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162306$$aForschungszentrum Jülich$$b7$$kFZJ
001033642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b8$$kFZJ
001033642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129394$$aForschungszentrum Jülich$$b9$$kFZJ
001033642 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001033642 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
001033642 9141_ $$y2024
001033642 920__ $$lyes
001033642 9201_ $$0I:(DE-Juel1)IAS-8-20210421$$kIAS-8$$lDatenanalyse und Maschinenlernen$$x0
001033642 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
001033642 980__ $$aposter
001033642 980__ $$aVDB
001033642 980__ $$aI:(DE-Juel1)IAS-8-20210421
001033642 980__ $$aI:(DE-Juel1)IBG-2-20101118
001033642 980__ $$aUNRESTRICTED