001033651 001__ 1033651
001033651 005__ 20250203103244.0
001033651 037__ $$aFZJ-2024-06523
001033651 1001_ $$0P:(DE-Juel1)203345$$aGiusti, Davide$$b0$$eCorresponding author$$ufzj
001033651 1112_ $$aLattice Coffee Seminar$$wSwitzerland
001033651 245__ $$aStudy of radiative leptonic decays from first principles$$f2024-11-19 -
001033651 260__ $$c2024
001033651 3367_ $$033$$2EndNote$$aConference Paper
001033651 3367_ $$2DataCite$$aOther
001033651 3367_ $$2BibTeX$$aINPROCEEDINGS
001033651 3367_ $$2ORCID$$aLECTURE_SPEECH
001033651 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1736164959_29201$$xOther
001033651 3367_ $$2DINI$$aOther
001033651 502__ $$cCERN
001033651 520__ $$aIn the region of hard photon energies, radiative leptonic decays represent important probes of the internal structure of hadrons. Moreover, radiative decays can provide independent determinations of Cabibbo-Kobayashi-Maskawa matrix elements with respect to purely leptonic or semileptonic channels. Prospects for a precise determination of leptonic decay rates with emission of a hard photon are particularly interesting, especially for the decays of heavy mesons for which currently only model-dependent predictions, based on QCD factorization and sum rules, are available to compare with existing experimental data. We present a non-perturbative lattice calculation of the structure-dependent form factors which contribute to the amplitudes for the radiative decays $H \to \ell \nu_\ell \gamma$, where H is a charged pseudoscalar meson. With moderate statistics, thanks to the use of improved estimators, we are able to provide rather precise, first-principles results for the form factors in the full kinematical (photon-energy) range. Our continuum-extrapolated lattice determinations may then be employed to compute the differential decay rate and the corresponding branching fraction and make comparisons with existing experimental data.
001033651 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001033651 536__ $$0G:(EU-Grant)101054515$$aMUON - Lattice determination of the muon's anomalous magnetic moment (101054515)$$c101054515$$fERC-2021-ADG$$x1
001033651 909CO $$ooai:juser.fz-juelich.de:1033651$$pec_fundedresources$$pVDB$$popenaire
001033651 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)203345$$aForschungszentrum Jülich$$b0$$kFZJ
001033651 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001033651 9141_ $$y2024
001033651 920__ $$lyes
001033651 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001033651 980__ $$atalk
001033651 980__ $$aVDB
001033651 980__ $$aI:(DE-Juel1)JSC-20090406
001033651 980__ $$aUNRESTRICTED