001     1033651
005     20250203103244.0
037 _ _ |a FZJ-2024-06523
100 1 _ |a Giusti, Davide
|0 P:(DE-Juel1)203345
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Lattice Coffee Seminar
|w Switzerland
245 _ _ |a Study of radiative leptonic decays from first principles
|f 2024-11-19 -
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Talk (non-conference)
|b talk
|m talk
|0 PUB:(DE-HGF)31
|s 1736164959_29201
|2 PUB:(DE-HGF)
|x Other
336 7 _ |a Other
|2 DINI
502 _ _ |c CERN
520 _ _ |a In the region of hard photon energies, radiative leptonic decays represent important probes of the internal structure of hadrons. Moreover, radiative decays can provide independent determinations of Cabibbo-Kobayashi-Maskawa matrix elements with respect to purely leptonic or semileptonic channels. Prospects for a precise determination of leptonic decay rates with emission of a hard photon are particularly interesting, especially for the decays of heavy mesons for which currently only model-dependent predictions, based on QCD factorization and sum rules, are available to compare with existing experimental data. We present a non-perturbative lattice calculation of the structure-dependent form factors which contribute to the amplitudes for the radiative decays $H \to \ell \nu_\ell \gamma$, where H is a charged pseudoscalar meson. With moderate statistics, thanks to the use of improved estimators, we are able to provide rather precise, first-principles results for the form factors in the full kinematical (photon-energy) range. Our continuum-extrapolated lattice determinations may then be employed to compute the differential decay rate and the corresponding branching fraction and make comparisons with existing experimental data.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a MUON - Lattice determination of the muon's anomalous magnetic moment (101054515)
|0 G:(EU-Grant)101054515
|c 101054515
|f ERC-2021-ADG
|x 1
909 C O |o oai:juser.fz-juelich.de:1033651
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)203345
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a talk
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21