Fachhochschule Aachen
Campus Jilich

Extending a Performance Analysis Tool

to Handle MPIl Message Probing

Bachelorarbeit

Katharina Haus

Fachbereich 9
Medizintechnik und Technomathematik

Studiengang Angewandte Mathematik und Informatik B.Sc.

IJ JULICH

Forschungszentrum

Julich, August 2024

UNIVERSITY OF APPLIED SCIENCES

FH AACHEN

Eidesstattliche Erklarung

Diese Arbeit ist von mir selbstdndig angefertigt und verfasst. Es sind keine anderen

als die angegebenen Quellen und Hilfsmittel benutzt worden.

Name: Katharina Haus

Jiilich, den 12.08.2024

Unterschrift des Studierenden

Diese Arbeit wurde betreut von:

1. Priifer: Prof. Dr. Andreas Terstegge
2. Prifer: Dr. Markus Geimer

Abstract

In the realm of high-performance computing (HPC), exascale systems have now
reached a point of practical reality and offer unprecedented computing power. As
these systems become more powerful, it is crucial to ensure that users can effectively
harness this power. It is essential to consider scalability and performance optimization
when developing applications running on such systems to be able to fully leverage
their capabilities. Performance analysis is a fundamental aspect of optimizing parallel
applications. This thesis addresses a specific gap in the Scalasca performance analysis
tool: MPI message probing. Message probing is useful to determine the required
buffer size for a pending message. This work presents an extended event model that
captures probe calls and integrates them into Scalasca’s analysis framework. The
enhanced tool is evaluated across various test cases, demonstrating its capability to
identify inefficiencies related to MPI message probing, especially the Late Sender wait
state. The results show that the extended analysis provides a more comprehensive

insight into application behavior.

Contents

[2

Background and Context|

R1

Message Passing Interface (MPI)|............ i,

[2.1.2 Message Probing].....

[2.1.3 Wait State and Waiting Time]............. ... i

B2

Performance Analysis Tools|........... ...

[3

Analysis of Message Probing|

B2

Timestamp Correction........ ...

[3.3

Wait State Analysis|..........oo

B4

Delay Analysig|

[3.5

Critical Path Analysis|..........co

11

21
21
24
28
32
36

39
39
39
40
40
41
41
43
44
45

IT1

Contents

© Conclusion and Future Work|

[References

[List of Figures|

AYs]» ¢

1Y

49

53
55
56

1 Introduction

In the domain of high-performance computing (HPC), efficient performance analysis
is crucial for optimizing parallel applications and the assurance of their scalability
on large-scale systems. HPC systems often utilize distributed memory architectures,
and are typically organized into clusters, with each including several nodes. Each
node contains processors and has its own memory space. A core is the smallest
processing unit within a processor. Threads, handled by cores, are the smallest units
of execution within a process and share resources such as memory. Nodes in such
configurations do not have direct access to memory on other nodes. Communication
between nodes is achieved through message passing, typically using the Message
Passing Interface (MPI) [I]. Many MPI implementations support threading and
facilitate hybrid programming approaches. This means MPI handles communication
between processes, while Open Multi-Processing (OpenMP) manages parallel threads

within a single process.

Performance analysis tools assist users in the identification of bottlenecks, the
optimization of resource usage, and the enhancement of the overall application
runtime. Among these tools, Scalasca [2, [3] has established itself as a powerful
framework for the scalable analysis of large-scale parallel applications. Scalasca’s
trace analyzer allows for the automated detection of inefficiency patterns. One
common inefficiency that Scalasca identifies is the Late Sender wait state. This
occurs when a process idles in a receive operation waiting for a message from a
delayed sender. Such an inefficiency cannot only occur in a receive operation, but also
in a probe operation. MPI message probing allows to check for an incoming message
without actually receiving it. This operation is particularly useful for determining
the size of the probed message, which is necessary for allocating an appropriately
sized buffer before the message is received. However, during a probe call, a process
can still idle while waiting for the peer process to send the message, and therefore a
Late Sender wait state can be revealed. Currently, Scalasca completely misses on

the probe operations, as they are not present in the underlying trace data.

The primary objective of this thesis is to extend Scalasca to handle MPI message
probing. This involves enhancing the event model to capture probe calls during
runtime and integrating these events into Scalasca’s analysis framework. Scalasca
performs different analysis phases to capture different performance metrics. These
include the wait state analysis, the delay analysis and the critical path analysis. In
the wait state analysis, execution time periods are identified during which a process
idles. The delay analysis determines the call paths that are responsible for the
identified waiting times. The critical path is the longest execution path without wait

states and points out call paths that determine the total runtime of an application.

1

1 Introduction

This work investigates how to support probing of messages in all three analysis
phases and describes a prototypical implementation.

The thesis is structured as follows: Chapter 2 offers a comprehensive overview
of related work, and the background information necessary for understanding the
context of this work. This chapter introduces the Message Passing Interface, with
particular focus on point-to-point communication and message probing. Additionally,
it outlines the current state of Scalasca, detailing its event model, the various analysis
phases, and the limitations it faces in managing probe operations. Chapter 3 presents
the extensions made to the event model to capture probe calls and discusses the
modifications required in Scalasca’s analysis framework to properly handle these
events in the various phases of its analysis. In Chapter 4, the extended prototype
implementation is evaluated through various test cases and the real-world application
ParFlow, showcasing the additional value and insights that can be gained by the
enhanced analysis. Finally, Chapter 5 concludes the thesis by summarizing the key

contributions and proposing potential directions for future work.

2 Background and Context

This chapter provides the background information necessary to understand this thesis.
The first section introduces the Message Passing Interface (MPI) and the concept of
MPI point-to-point communication. Special emphasis is placed on message probing
and wait states that eventually may occur in this context. The second section is
dedicated to performance analysis of MPI applications. The Scalasca performance
analysis tool, which utilizes the Score-P measurement tool and the OTF2 Trace

Format, is presented here.

2.1 Message Passing Interface (MPI)

The Message Passing Interface (MPI) [I] is an application programming interface
(API) consisting of library routines that enable data to be passed between pro-
cesses. It is widely used in the development of parallel applications and has become
the de facto standard for communication in high performance computing (HPC)
environments. MPI supports various forms of communication. The main MPI
communication categories are point-to-point, one-sided, collective, and 1/O opera-
tions. Point-to-point refers to the transfer of data between two processes. One-sided
communication allows only one process to actively participate in the communica-
tion, such as accessing the memory of another process. Collective communication
describes a communication operation that involves a group of processes. Additionally,
MPT includes 1/O operations that allow data exchange between the file system and
processes.

An MPI operation can be defined as a series of steps performed by the MPI library
with the objective of establishing and enabling data transmission or synchronization.
In general, an MPI operation progresses through four stages: initialization, starting
completion, and freeing. These stages are implemented as one or more procedure
calls. A procedure call denotes a specific MPI function that can be called within the
code. During the initialization stage, the argument list is passed to the operation.
At this stage, the contents of the data buffers are not yet passed, and the user is still
allowed to modify the buffers. Subsequently, the operation starts by transferring
control of the data buffers to the MPI library, if any exist. This stage is referred
to as the starting stage. From this point on, users are no longer allowed to modify
the buffers until control is transferred back. This happens during the third stage,
the completion stage, which also indicates whether arguments have been updated.
During the following freeing stage, control of additional arguments is returned. The
interface allows for blocking, nonblocking and persistent operations. A blocking
operation goes through all four stages during a single call. A nonblocking operation

performs the initialization stage and the starting stage during an initiation call. The

3

2 Background and Context

last two stages are executed in a single completion call. Persistent operations involve
a separate call for each of the four stages. A pending operation is defined as an
operation that has been initiated but not yet completed.

In a blocking call, the invoking process remains in the call until all four stages
have been completed. When using nonblocking procedures, the call returns after
the operation is initiated, allowing the calling process to perform computation in
the meantime and complete and free the operation at a later time. MPI further
distinguishes between local and nonlocal procedures based on whether their return
requires a corresponding remote procedure call. For example, a blocking receive
operation cannot return before the sending process has started the send operation.
Therefore, it is a nonlocal procedure. In contrast, a nonblocking receive call is a
local procedure because the receive is only initiated, and another call is required to
complete the operation.

This work focuses on point-to-point communication, which is discussed in detail in
the following section. While collective and one-sided communication, as well as I/O
operations, are important aspects of MPI programming, they fall outside the scope

of this thesis and will not be discussed further.

2.1.1 Point-to-Point Communication

Point-to-Point communication involves exactly two processes. The core operations
for point-to-point communication are sending and receiving messages. One process
performs the send operation, while the other one is responsible for the receive
operation. The sending process must specify various arguments to identify a message,
including the rank of the destination process, the message tag, and the communicator.
A communicator represents a communication context for a group of processes.
Each process belonging to a communicator is assigned a unique rank number for
identification within this communicator. This integer value may be used to address
other processes in the same communicator. The message tag is an integer identifier
utilized to label a message. These arguments, along with the source rank, which
is the rank of the sending process in the communicator, constitute the message
envelope. Moreover, the send call takes the address of a memory buffer that contains
the data to be transmitted. The receiving process needs to specify the source rank,
as well as the message tag and a communicator. In order to receive a message, these
arguments need to match the arguments of the message envelope specified by the
sending process. It is possible to use wildcard options for the tag and/or the source
argument to receive messages with an arbitrary tag and/or from any sender. The
receive operation requires the address of a receive buffer that fits the size of the

incoming message. Unlike the send operation, the receive operation also takes a

4

2 Background and Context

status object, which provides information about the actual message envelope and size.
This is particularly useful to determine which message was received when wildcard
options were used. A receive operation with wildcard options will receive the first
pending message that matches the envelope.

MPI differentiates between several communication modes. In standard mode, a send
is a nonlocal procedure. Its return behavior depends on the message size. If the
message is sufficiently small, it can be transferred into a temporary system buffer on
the receiver side that can be accessed during the matching receive operation. Hence,
the send call may return before the corresponding receive operation was started.
Otherwise (i.e., for larger messages), the message is directly transferred into the
receive buffer on the peer process. In this scenario the operation cannot complete
before the matching receive operation has been initiated. The completion of a buffered
mode send is independent of the start of a corresponding receive. It differentiates
from the standard mode send in that the user is responsible for providing a sufficiently
large buffer that allows the message to be held internally on the receiver side until
the appropriate receive is called. The return of a synchronous mode send guarantees
that a matching receive has been initiated, making it a nonlocal procedure. A ready
mode send can only be invoked if the matching receive has already started, otherwise
the operation is erroneous. It thus follows that this send mode can only be used if the
sender is aware, through the program logic, that the receive has already been initiated
on the peer process. This awareness may allow for a more efficient implementation
of the operation than that of the other modes.

Nonlocal procedures require an operation on a corresponding process to be at least
initiated. At this point, a synchronization happens because the nonlocal procedure
cannot return before the other process reached a specific point in the execution path.
A nonblocking call is characterized to be incomplete and local. A procedure call to
complete a receive operation that is invoked after the corresponding send has started,
might be local. Without the restriction that the corresponding send was started,
it would be a nonlocal procedure. This allows nonblocking calls to complete an
operation. For instance, an MPI_Test call is nonblocking. It checks if an associated
operation can be completed. On confirmation, true is returned, and the operation is
completed. To illustrate, a nonblocking send, MPI_Isend, initializes a send operation
and returns a request handle. The request handle can be utilized to test if the
associated operation can be completed and to wait for its completion. To ensure the
send operation is finished, the process must call a wait or test procedure with the
send request object as an argument. Wait is a blocking call which guarantees that
the operation associated with the request handle is completed when the call is left.
Test is a nonblocking procedure that returns a flag indicating whether the associated

operation is completed. The MPI _Irecv call, which is the nonblocking receive variant,

5

2 Background and Context

functions similarly. A call to MPI_Wait, or a successful MPI_Test call, guarantee
that the entire buffer has been received. The nonblocking completion of an operation
includes an implicit synchronization even though it is a local procedure because it

secures a happened-before relationship.

2.1.2 Message Probing

In order to receive a message, a receive buffer of sufficient size has to be allocated.
There are use cases where the receiving process is not aware of the required buffer
size. Therefore, MPI provides a way to determine the size of a pending message: It
is possible to probe for a message. Message probing allows to check for an incoming
message without actually receiving it. A separate operation is still needed to receive
the message. The probe call takes the message envelope as arguments: source, tag,
and communicator as well as the address of a status object. Again, it is possible
to specify wildcard options for tag and source. The status object allows accessing
the actual source and tag in that case, after the call returned. There are several
calls that can be used to probe for a message. MPI_Probe is the blocking version
that returns when a message matching the arguments is ready to be received. A
call to probe checks for the message that would be received by a call to MPI_Recv
with the same arguments. The nonblocking MPI_Iprobe functions similarly in case a
message is ready to be received, and it returns true. If there is none, false is returned.
Another variant are matching probes. In addition to the arguments a regular probe
would take, it also takes the address to a message handle. To receive the probed
message, a matching receive which takes that message handle has to be invoked.
Again, MPI_Mprobe is the blocking call and MPI_Improbe the nonblocking variant,
which behaves similarly when successful and otherwise returns false. A message can
only be probed once with a matching probe, whereas it can be probed multiple times
with the regular probe. It is not necessary to receive a message immediately after it

has been probed for. [I]

In a multi-threaded context, the use of MPI_Probe can be problematic. If a process
calls MPI_Probe and a matching send operation has been initiated by another process,
the MPI_Probe call returns unless the message is received by a concurrent receive
call executed by the same process on a different thread. A receive operation following
a regular probe will receive the probed message unless the message has already been
received on another thread of the same process in the meantime. To avoid these

cases, the use of matching probes with matched receives is suggested.

6

2 Background and Context

2.1.3 Wait State and Waiting Time

Blocking MPI procedures can exhibit wait states. In general, wait states arise when
a process reaches a synchronization point late. This causes one or more processes to
idle. The period of idle time is referred to as waiting time. These synchronization
points can occur in blocking operations or in the nonblocking completion of an
operation. Depending on where the wait state occurs, different patterns of wait
states can be characterized. For instance, a receive operation cannot complete before
the corresponding send has been started. Figure [1] illustrates this behavior in a
timeline diagram. In the diagram, the time is represented on the x-axis, while
processes are listed on the y-axis. Each process corresponds to a horizontal line in
the diagram. Rectangles aligned with these lines indicate the execution time within
specific routines for each process. As illustrated in the diagram, process B starts a
blocking receive operation before process A enters the corresponding send operation.
In the period before the start of the send operation, it is impossible for process B to
receive the message. Therefore, the time which is spent in the receive call before the
send call has been entered is waiting time. This inefficiency pattern is referred to as

Late Sender wait state.

A Send

processes

waiting time

time

Figure 1: Illustration of a Late Sender Wait State.

Figure [2] visualizes that process B enters the receive call after process A enters the
send call, but before A leaves the send call. This indicates that a synchronization
happened and the send call has been waiting for the start of a related receive
operation, as described in Section [2.1.1] In this case, the send call can exhibit a Late
Receiver wait state. Therefore, the time spent in the send call before the matching
receive has been started is waiting time, since the send operation cannot complete
before the receive operation started.

Similarly, these wait states can occur in wait calls which complete a communication
operation that was initiated with a nonblocking procedure. Likewise, a blocking
probe call can exhibit waiting time. In this case, distinguishing whether the send
operation synchronizes is sensible. For a non-synchronizing send, the probe call
may contain Late Sender waiting time, which is identical to the waiting time that

would have been experienced by a receive at the same point in time (see Figure .

7

2 Background and Context

processes
>

Recv

waiting time

time

Figure 2: Illustration of a Late Receiver Wait State.

A synchronizing send, on the other hand, can exhibit a Late Receiver wait state,
as it waits for the start of the receive operation rather than the probe operation.
Simultaneously, the probe call may also exhibit a Late Sender wait state within the
same communication context. This results in the send operation having two distinct
synchronization points. The first is with the probe, where the probe exhibits its Late
Sender wait state, and the second is with the receive call, where the send reveals the
Late Receiver wait state. This case is illustrated in Figure

e
| |

processes
processes

oy}

Fatesender waiting time

time time

(a) Illustration of a Late Sender Wait State in (b) lllustration of a Late Sender and a Late Re-
a Probe Call. cewer Wait State in the same Communica-
tion Context.

Figure 3: Visualization of Wait States in Probe Calls.

2.2 Performance Analysis Tools

Supercomputers offer massive amounts of computational resources that are underuti-
lized by the majority of users. Identifying and addressing performance bottlenecks is
therefore essential for optimizing resource usage and enhancing application efficiency.
Performance analysis tools assist users in tuning their application. The most common
approaches used by such tools are profiling and tracing. In profiling, the performance
data is stored in a summarized format. Profile data typically comprise aggregated
data, including information about the overall runtime of various code sections, the
frequency with which certain methods are called, memory consumption, and other
relevant metrics. In contrast, tracing refers to the recording of information about
the flow of an application during its execution. The recorded information may be
in the form of events, which are defined as specific occurrences during execution,
such as entering or leaving code regions. For a more detailed description, please
refer to Section [2.2.1] All details about the execution of the application are stored

8

2 Background and Context

in trace files. Tracing can provide detailed insights into the chronological sequence
of events as well as call-specific information, such as sender, receiver, data volume
and identification of an MPI message. The detailed recording of data during tracing
causes the amount of recorded data to grow in proportion to the execution time and
the number of processes and threads. There exist two principal methods to acquire
performance data. On the one hand, there is sampling. Here, the application is
interrupted at a certain frequency, the sampling rate. The address of the current
instruction can be determined by reading the program counter, and the length of the
sampling interval can be added to the cumulative execution of the current source code
region, for example. Sampling can solely be used to collect statistical information,
which is why it is typically employed for profiling purposes. The runtime overhead
depends on the sampling rate. Sampling cannot ensure that every source code region
is captured. On the other hand, there is instrumentation. Instrumentation refers to
the process of adding additional code to a program to collect performance data. In
contrast to sampling, this guarantees that each function is recordable. [4]

Well-known tools to collect performance data are Score-P [5l [6], Extrae [7] and
HPCToolkit [§]. Score-P and Extrae support both instrumentation and sampling,
while HPCToolkit is a sampling-only tool primarily utilized for profile creation. In
this work, the focus will be on instrumentation. The analysis tool Paraver [9] is
based on Extrae. Score-P is compatible with the analysis tools Vampir [10], Scalasca
[11], TAU [12] and formerly Periscopd| [13]. Scalasca and Vampir are post-mortem
tools that process OTF2 [14] trace files. Vampir provides an interactive visualization
that allows the user to analyze trace data based on a graphical representation.
Scalasca automatically detects performance bottlenecks and categorizes them, which
is especially useful for larger traces. TAU is a tool framework that allows for
instrumentation, measurement, and analysis. As a part of TAU, the Program
Database Toolkit offers automatic instrumentation. Profile data can be visualized

using ParaProf [15], and data mining is done via PerfExplorer [16].

2.2.1 Score-P

Score-P [5], 6] offers a joint measurement infrastructure that allows to analyze data
with various tools. It provides an instrumentation framework to collect performance-
related data like times, visits, communication metrics or hardware counters during the
execution of the program. To gain that information during runtime, the application
needs to be linked against a provided runtime library that matches the desired

parallelism. For instance, Score-P offers separate libraries for serial, MPI, OpenMP

I'Periscope was an on-line analysis tool that evaluated performance during runtime. Meanwhile,
the project has been abandoned.

2 Background and Context

and hybrid execution. Score-P supports both profiling and tracing techniques. The
output depends on the user’s specifications. When profiling is desired, a profile in
the Cube4 [17] format is produced, whereas for tracing the recorded data is stored
in the OTF2 file format, that is presented in the next paragraph. In order to detect
wait states, tracing is required because detailed information about the chronological

order of the application execution is needed.

Open Trace Format 2 (OTF2)

The Open Trace Format 2 is a trace data format based on the EPILOG [1§] trace
format and the Open Trace Format (Version 1) [19] that were previously used by the
tools Scalasca and Vampir [14]. Both Scalasca and Vampir are now compatible with
the OTF2 format. Event trace data constitute a layer that is able to move data from
the runtime measurement to the post-mortem analysis. OTF2 is a highly scalable
and memory efficient event trace data format. The memory efficiency is reached
by separate storage of specific files to avoid redundancies. It uses an anchor file in
order to manage the trace data, a global definitions file and separate local trace files
and local definition files for each location. A location refers to a specific execution
instance, like a process or thread. A local trace file contains events that were recorded
on a specific location in temporal order. Each event contains a timestamp and other
event-specific attributes. Events can reference the separately stored definitions.
Definition objects do not contain a timestamp and refer to objects that are relevant
during execution over a longer period of time, for example communicators. The
global definition file stores definitions for all locations. In order to avoid additional
communication during data collection, each location uses separate local identifiers in
its local trace file to reference definition records. The local definition files contain
mapping information between the local and global definitions, and as well store
definitions that only occur on the specific location. This allows reducing the memory
requirements by avoiding redundancies in traces. The OTF2 event model specifies
various events, including entering and exiting code regions, sending and receiving

messages and exiting collective communication operations.

processes

time

‘ Enter Leave Send |:| Recv ‘

Figure 4: Illustration of OTF2 Events in Blocking Point-to-Point Communication.

10

2 Background and Context

Figure [4] illustrates the events that are collected during a point-to-point message
exchange using blocking communication. For each code region, an enter event (E)
marks the beginning, and a leave event (L) marks the end of the region. The send
event (S) is generated at the outset of the corresponding region, thus before the
actual send happens. A receive event (R) is generated only after the receive has been

completed. The arrow represents the transfer of a message.

processes

time

Enter Leave Send Request

|:| Send Complete Recv Request |:| Recv Complete

Figure 5: Illustration of OTF2 Events in Nonblocking Point-to-Point Communication.

Figure [5| depicts the events that are recorded during nonblocking point-to-point
communication. Separate MPI calls are invoked to initiate and complete an operation,
resulting in the recording of request and completion events, respectively. The send
operation is initiated with an MPI_Isend call, which generates a send request event
(SR). This event marks the earliest point in time at which the message could be
sent. In the subsequent MPI_Wait call the operation is completed and the send
completion event (SC) is recorded at the end of the region. The event guarantees
that the sending of the message has been completed. Similarly, the receive request

event (RR) and receive completion event (RC) are recorded on the peer process.

2.2.2 Scalasca

Scalasca [2], 3] is a software tool designed to assist users in enhancing the perfor-
mance of parallel programs, particularly on large-scale systems. It identifies where
performance is lagging, especially in terms of communication and synchronization
between processes. Scalasca not only highlights these bottlenecks but also helps to
understand the underlying causes. This information is gained by the post-mortem
analysis of trace data generated with the measurement tool Score-P and present in
the OTF2 format. Scalasca, which is mainly programmed in C++, processes the
local trace data in parallel using a replay-based analysis approach. The analysis uses
the same number of cores as the application itself. Consequently, the memory and
processing power available for the analysis increase in proportion to the number of
cores.

Before starting the analysis, Scalasca loads the global definitions and local event

trace data into the main memory of each process. All occurring object references are

11

2 Background and Context

unified using the mapping table from the local definition files. Scalasca performs a
preprocessing step to ascertain the completeness of the global call tree provided by
the trace definition data with respect to the local trace data. Additionally, the local
trace is preprocessed to provide the full trace-access functionality. For example, for
nonblocking operations an iterator syntax is established, that allows to access the
offset to the subsequent event using the same request. Scalasca’s parallel analysis
workflow is illustrated in Figure[6] All event specific attributes can be accessed via
the events in the trace data. Furthermore, Scalasca provides an iterator syntax for

navigating through the local trace.

Instrumented target application]

Measurement runtime library

Local
definitions »
b
il
vy

N——
~——

T L
1 L

| Sobal]\ [p—— \ ' Parallel pattern search

| defintions | \defi:itizns) ']
H Collate | | Pattern

| report

i
'
'
Unify | Iglobal B’EEE(ID maps :_ _____ e
| maps . Parallel trace
i & access layer
AL Y
Local trace Local (h N
buffers i event traces | Translate IDs/ /5 h
L 5
T T

Figure 6: “Schematic overview of Scalasca’s parallel analysis workflow. Gray rectangles
denote programs, white rectangles with the upper right corner turned down denote
files, and bubbles denote data objects residing in memory. Stacked symbols denote
multiple instances of programs, files or data objects running or being processed in
parallel.“ [3]

Local
< "
event lists

Bl Synchronize

Scalasca replays the original communication in order to exchange the process local
trace data. Scalasca performs a total of five communication repetitions for various
analyses. Prior to Scalasca’s analysis of the event trace data, an optional timestamp
correction can be performed, which includes two additional replays of the commu-
nication. The purpose of the timestamp correction is to guarantee the correctness
of the logical order of events. Event records collected on different nodes can have
discrepancies due to clock drift or different clock speeds. Throughout the replays, the
trace data is traversed in either forward or backward direction. When a communica-
tion event is reached, the original communication operation is mimicked by a similar
communication operation. In these replays, performance data of the communication
regions is transmitted instead of the original buffer content. In case of a backward
replay, the communication direction is reversed, resulting in a send event triggering
the posting of a receive and vice versa. During the first forward replay, all wait
states excluding the Late Receiver wait state are detected. The subsequent backward
replay identifies Late Receiver wait states. Additionally, the synchronization point
information of the identified wait states during the first replay is transmitted to the
ranks that participated in the corresponding communication operation. In the third

replay, the synchronization point information for the Late Receiver wait states is

12

2 Background and Context

transferred. The fourth replay is conducted to calculate the delay costs (i.e., the total
amount of waiting time caused by an imbalance, see Section and to determine
the critical path (see Section [2.2.2)). The final replay is necessary to classify the
detected wait states. The different analyses as well as the timestamp correction
are explained in the following paragraphs. To avoid the transmission of redundant
messages during the same analysis, specialization relationships between patterns are
used to reuse already obtained results. This is realized through an event notification
and callback approach, and necessitates that each message be replayed a single time,
even if it is part of multiple patterns. Whenever the algorithm detects an inefficiency
pattern, it calculates the severity of this pattern instance and the value is then
accumulated in a matrix consisting out of the pattern and the call path. This matrix
is stored on the analysis process responsible for the rank exhibiting the wait state. At
the end of the trace traversal, the local results are combined in a three-dimensional
matrix consisting of pattern, call path, and rank. As a result of the analysis, a Cube4
format file is created, which can be evaluated with the visualization tool CubeGUI
[20]. As this work concerns only point-to-point communication, all analyses are thus

explained in relation to that case.

Timestamp Correction

Distributed computing systems consist of multiple nodes. Each node has its own clock
with limited or no synchronization. As a result, event records collected on different
nodes can have discrepancies due to clock drift or different clock speeds. When it
comes to analyzing the performance data, it strongly depends on the comparability
of the recorded timestamps. To enable a meaningful analysis, a global time should
be applied. Assuming each process is running with a constant but different clock, it
is possible to calculate the global time of each process as a linear function of the local
time of each process. In order to achieve this, Score-P is taking offset measurements
at MPI initialization and finalization and a linear offset interpolation is performed.
Nevertheless, assuming a constant drift is only an approach which can still lead
to so-called clock condition violations. Clock conditions ensure the logical order
of events. A clock condition violation, therefore, refers to a situation in which a
happened-before condition is breached. For example, when the timestamp of a receive
event is less than that of the corresponding send event. It should be noted that a
send event always indicates the start of a send operation, and a receive event marks
the end of a receive operation. In comparison to singular erroneous timestamps,
clock condition violations can be detected quite easily. To correct clock condition
violations, Becker et al. [21l 22] extended the controlled logical clock algorithm

[23] and integrated it into Scalasca. This algorithm is a method for retroactively

13

2 Background and Context

correcting timestamps that violate clock conditions. This is achieved by shifting
events and attempting to preserve local intervals. For example, if a clock condition
violation occurs in a send-receive pair, the receive event would be shifted forward
in time to happen after the send event. To maintain the length of local intervals
between events, the events in proximity would also be shifted. The events are shifted
in a manner that the further away they are from the receive event, the smaller the
shift. In this way, the shift has an effect only in a certain area. Nevertheless, such a
shift can possibly arise in new violations. To prevent this, the algorithm performs
two phases. The first phase consists of a forward replay and during this replay, the
forward amortization takes place. Here, the event responsible for the clock condition
violation is shifted, as well as the events immediately following the causing event,
while ensuring that the total runtime of the program is not significantly increased. In
the second phase, a backward replay, also called backward amortization, the previous
events are shifted to flatten jump discontinuities introduced in the forward replay
using a piecewise process-local linear correction in an amortization interval. The
interval size is selected in a manner that precludes the generation of new clock

conditions as a result of the shifting of surrounding events.

Wait State Analysis

Scalasca’s wait state analysis happens during the first two replay passes of the
analysis phase [2, B]. The event traces are searched for characteristic execution
patterns that indicate wait states. The main idea is to calculate waiting times
on the processes on which they occur. The algorithm traverses the local traces in
parallel and exchanges performance data when an event indicating a communication
operation is encountered. During the forward pass, the original communication is
replayed. For instance, when a send event is reached in the trace, the replaying
process invokes a send with the same envelope as in the original application. Instead
of sending the original application data, the event data of the send event, along
with the event data of the corresponding enter and leave events, are transferred.
When the corresponding rank encounters the receive event in their local trace, this
information is received. Figure [7] visualizes this behavior and shows the events that
are recorded for a send-receive pair. When process A encounters the send event,
it transfers the relevant performance data, including the enter timestamp of that
region, to process B. Likewise, when process B encounters the receive event, it posts
a receive operation. Once it has received the data, it is able to calculate whether
waiting time occurred in the receive region. If the remote enter timestamp of the send
region is greater than that of the receive region, a Late Sender wait state is detected.

The waiting time is calculated by subtracting the local enter timestamp from the

14

2 Background and Context

received remote enter timestamp. When a wait state is found, a synchronization
point is stored. In case of the Late Sender wait state, the sender and receiver rank
are synchronizing. This synchronization point is stored on the receiver side, as the
wait state is detected here. In the subsequent replay, which is a backward replay, the
direction of communication is reversed. In this instance, the receiver transmits the

synchronization point information to the sender.

processes

waiting time

time

Enter 2W Leave Send I:l Recv

Figure 7: Illustration of the Communication Replay for the Late Sender Wait State.

Another form of the Late Sender wait state is the Late Sender Wrong Order wait
state. Here, the recipient waits to receive a message while another message is ready
to be received. To determine a wrong order situation, each process owns a ring buffer
which stores the last occurrences of Late Sender wait states. Whenever a receive
event is reached, the timestamps are compared to find out if a Late Sender instance
in the ring buffer correlates with a wrong order situation. Figure [§] illustrates the

aforementioned situation.

processes

| DN D

waiting time

time

Enter 2R Leave Send I:l Recv

Figure 8: Illustration of the Communication Replay for the Late Sender Wrong Order Wait
State.

In the initial receive operation of process C a Late Sender wait state is detected. Here,
the enter timestamp of the send operation from process A is received. Therefore,
the send enter timestamp as part of the Late Sender instance is stored in the ring

buffer. The following receive operation of rank C receives the enter timestamp of the

15

2 Background and Context

send operation from rank B. Subsequently, the received timestamp is compared with
the timestamp stored within the ring buffer. Because the send enter timestamp of
rank B is less than the timestamp of the send enter event that corresponds to the
Late Sender wait state detected before, the wait state is classified as a wrong order
situation.

During the backward pass, Late Receiver wait states are identified. The communica-
tion direction is reversed. That means a send event in the trace leads the replaying
process to invoke a receive operation with that envelope. A receive event leads the
corresponding rank to post a send operation, sending the timestamps of the receive
region. Figure [shows the communication replay. Process A compares the received
enter timestamp with its own enter and leave timestamps of the send region. If the
enter timestamp of the receive operation falls between the enter and exit timestamps
of the send region, a Late Receiver wait state is identified. The waiting time is
calculated as the difference between the two enter timestamps. The synchronization
point is stored on the sending process and during the next forward replay it is

transferred to the receiver’s process.

processes

waiting time

time

Enter 2B Leave Send I:I Recv

Figure 9: Illustration of the Communication Replay for the Late Receiver Wait State.

Delay Analysis

Bohme et al. [24] 25] extended Scalasca’s wait-state detection by a delay analysis pass
to identify the root causes of wait states. A delay is the counterpart of a wait state.
It is defined as an interval that causes a process to arrive late at a synchronization
point and thus induces waiting time on the corresponding peer process. The costs
of a delay are the amount of wait states it causes. Delay costs may far exceed
the delay itself. The cost model allows for a ranking of delays according to their
associated resource waste. The delay costs are further distinguished into short-term
and long-term delay costs. Short-term delay costs describe the amount of direct
waiting time that is caused by the delay whereas long-term delay costs refer to the
amount of indirect waiting time a delay causes. This is illustrated by Figure

using two Late Sender wait states. All processes execute a routine Foo. Process A

16

2 Background and Context

spends more time in that routine than the other two processes and therefore delays
the following send operation. Right after leaving the routine Foo, process B enters a
receive operation to receive a message from process A. Here, process B reveals a Late
Sender wait state, since the corresponding send has not been entered yet. The wait
state is a direct result of the delay in routine Foo on process A. As such, the waiting
time are short-term costs of this delay. Process C as well enters a receive operation
right after leaving routine Foo in order to receive a message from B. Here, another
Late Sender wait state is encountered. The wait state in the receive operation of
B subsequently causes the wait state on process C. Therefore, the amount of wait
state that is caused by the imbalance in routine Foo are the long-term costs of the
delay, and it is an indirect wait state. However, process B also has a delay in the
receive operation, which directly causes the second part of the wait state on process
C. Consequently, the amount is short-term delay costs, as this is a direct wait state.
The wait state on process B is designated a propagating wait state, as it precipitates
a wait state on process C. The wait state on process C is classified a terminal wait
state, as it represents the end of the causal chain and is not a source for further wait

states.

delay

H Send1

Foo

processes
p=
I

direct wait state delay

short-term delay costs

indirect wait state direct wait state :

e N

), J
long-term delay costs short-term delay costs

0 1 2 3 4 5 6 7 8 9 0fime in s

Figure 10: Illustration of Short- and Long-term Delay Costs.

This section provides a conceptual description of the process for determining delay
costs. It does not aim to provide a comprehensive account of the details, as this
would exceed the scope of the present work. The delay costs are calculated during a
backward replay. They are calculated on the causing rank, which is the rank where
the delay occurs. For the example visualized in Figure [10] these are the sender ranks.
For all wait states detected in the former replays, the root cause analysis is triggered.
First, the execution differences since the previous synchronization point between
the delayed and the waiting process are characterized. Taking a look at Figure

two synchronization intervals can be determined, assuming that a synchronization

17

2 Background and Context

between all processes happened in front of routine Foo. Process A and B share a
synchronization interval until the end of Recvi. The synchronization interval from
process B and C reaches from Foo to the end of Recv2. Each process calculates a
time vector d which contains the execution times for each region within the specified
interval, excluding waiting times and the concluding communication operations.
Additionally, a vector containing the waiting time, denoted as w, is calculated for

each process.

d(A,Foo,Send1) = lFOO; 6] (2.1)

d(B,Foo,Recvl) = |Foo: 2.5], wB = |Recvl: 3.5] (2.2)
Foo: 2.5

d(B,Foo,Send2) = : wp = |Recvl: 3.5] (2.3)
Recvl: 2

d(C>F007ReCV2) = [FOO: 25]) wp = RQCVQZ 55] (24)

Upon reaching a receive event during the backward replay, the calculated time vector
d, and the waiting time w are transferred to the sender. The sending process is then
able to calculate a delay vector §, containing the execution differences excluding
waiting times. During the backward replay, routine Recv2 on process C and routine
Send?2 on process B are encountered first. Here, process B receives the values from
Equation and is able to calculate §:

d(B) = d(B,Foo,Send2) — d(C,Foo,Recv2) = [Recvl: 2] (2.5)

The delay vector § contains the amount of delay that is located on the rank. In
the next step, the short- and long-term delay costs are calculated. Taking a look
at Figure [10] the short-term costs of the delay on rank B are the amount of direct
waiting time in Recv2 on rank C. B divides the total amount of waiting time in
Recv2 obtained from vector w into direct and indirect waiting time by comparing it
to the amount of delay §(B). The total amount of delay on B equals two seconds and

therefore process B causes two seconds of the wait state on process C directly, which

18

2 Background and Context

are the short-term costs of the delay. The remaining 3.5 seconds waiting time result
in the propagation of the wait state on process B and therefore are long-term costs
of the delay that causes that wait state. This information is stored in a propagation
factor ¢, that indicates whether a wait state propagates further. When rank B
encounters the receive event in routine Recv! the time vector d(B,Foo,Recvl), the
waiting time wp, as well as the propagation factor ¢ = 3.5 are transferred to rank A

which is then able to calculate its delay vector:

d(A) = d(A,Foo,Sendl) — d(B,Foo,Recvl) = [Foo: 3_5] (2.6)

Process A as well compares the amount of its delay with the waiting time on process B.
The amount of the delay matches with the amount of waiting time and therefore the
short-term delay costs are 3.5 seconds. Since the wait state on process B propagates,
the long-term delay costs of the delay are the propagation factor of that wait state

and equal 3.5 seconds.

Critical Path Analysis

The critical path is defined as the longest execution path without wait states. It
points out activities that determine the total runtime of an application. An activity
is defined as a single execution of a call path by a specific process. Improving the
runtime of activities that are on the critical path allow to potentially improve the
total runtime of the application, whereas performance optimization of activities that
are not on the critical path only will extend wait states but not improve the overall
runtime. To analyze the critical path, Bohme et al. [26] introduce different metrics:
the critical path profile and the critical path imbalance indicator. The imbalance
indicator hints how much time is wasted in a call due to load imbalance, and the
critical path profile shows how much time an activity spent on the critical path. The
critical path analysis takes place in a backward replay. First, it is identified which
MPI rank entered the finalize call last. This determines the endpoint of the critical
path. The critical path can only be on one process at a time, therefore an ownership
flag is set. The critical path stays on a process until the next communication
event which exhibited waiting time is encountered. Here, the synchronization point
information stored during the former replays is utilized. The critical path will then

transition to the process which is responsible for the waiting time.

19

2 Background and Context

Challenges in Analyzing Probe Calls

If the probe call is to be taken into account in the various analyses, one encounters
the problem that in the case of probed receives, there are two synchronization points
for the corresponding send event. One synchronization pair consists of the send and
the probe events and the other of the send and the receive events. The exchange
during the analyses takes place at the corresponding synchronization points and is
designed to use a similar communication operation for data exchange. For example,
to be able to recognize a Late Sender wait state in probe, the enter timestamp of
the send operation would be required in the probe region. This raises the question
of how probe should be handled in the forward and backward replays. The following
chapter will examine various strategies that can be employed to include probe into

the different analyses.

20

3 Analysis of Message Probing

At present, Scalasca is not capable to analyze probes. This is due to the fact that
Score-P does not gather performance data for probes during runtime, as there exists
currently no OTF2 event to store call-specific probe information. This chapter
therefore covers the introduction of appropriate OTF2 events and discusses how

these events can be handled in the various analyses performed by Scalasca.

3.1 Extended Event Model

This section discusses which events are required in relation to probe calls. In order
to incorporate probe calls into the various analyses of Scalasca, it is essential to
collect data pertaining to these calls during runtime, with the objective of generating
events associated with them. The initial consideration is limited to defining the
requirements for which information should be obtained from the event record for a
regular probe, prior to an examination of the specific attributes that are required for
a matching probe.

In the wait state analysis, for instance, a probe requires the event data from the send
with which it synchronizes in order to calculate a potential Late Sender wait state.
Consequently, the probe event must be capable of providing the necessary attributes
to execute a receive operation that receives the event data of the corresponding
send. As previously outlined in Section [2.1.1] the message envelope is required for
this. The relevant information about the source rank and the message tag can be
retrieved from the status object returned by the probe call. Since the communicator
argument in the probe call is unable to take a wildcard option, the information
can directly be extracted from the call parameters. This proposal would therefore
result in a probe event containing the parameters of the source rank, the message
tag and the communicator. Glancing at a receive event record, it becomes evident
that this event comprises the proposed parameters for a probe, in addition to other
parameters. This leads to the idea that it is sufficient to reference the corresponding
receive event in a probe event, rather than the individual parameters, given that
these can be accessed in Scalasca via the receive event. In order to implement this
approach, Score-P would have to perform such a matching between the probe event
and the probed receive event at runtime. This would require Score-P to track all
probe events until the corresponding receive occurs to be able to correlate them.
In a multi-threaded context, a shared data structure with an appropriate locking
mechanisms must be used for this purpose. If multiple messages with the same
envelope are pending, a probed message may be received by a concurrent receive
operation executed by the same process on a different thread, even if there is a
receive operation that directly follows the probe call (see Section . In such a

21

3 Analysis of Message Probing

situation, it may vary from execution to execution which of the messages is retrieved
at which receive operation, and determining the correct matching is not possible.
This matching problem is inherent and occurs regardless of whether the matching is
performed by Score-P or Scalasca. Therefore, it must be assumed that the probe and
the receive occur on the same location. Given that the MPI standard recommends
the use of matching probes in a multi-threaded context, this assumption is reasonable.
If Score-P is responsible for matching probe and receive events, this would result
in additional runtime overhead during the measurement due to the required event
tracking. Consequently, this approach has been rejected, and the former one is noted
for now.

Next, the requirements that are placed on an event for matching probes are examined.
In this context, a call to MPI_Mrecv would receive a probed message using a message
handle that was returned by an MPI_Mprobe call. Currently, Score-P records a
regular receive or receive complete event after the reception of a message by a matched
receive, depending on whether MPI_Mrecv or the non-blocking variant MPI_Imrecv
was utilized. Given that both the probe and the matched receive utilize the same
message handle, it is feasible to store an ID correlating with said message handle as
the event data for a matching probe and to substitute the receive event by a matched
receive event comprising that message handle ID, in addition to the arguments of
a regular receive event. A matching between these events can be achieved in the
preprocessing step of Scalasca, similar to the offset iterator syntax established for
events for calls using requests, as detailed in Section [2.2.2] This would allow for
direct access to the matching receive event in a probe event and vice versa. Upon
encountering a matching probe event in the trace, the associated matched receive
event can be accessed, and its parameters can be used to receive the event data of
the corresponding send. It is possible that further analyses may be triggered by a
receive event that requires the event data from the send region. Therefore, it should
be possible to determine during the analysis which receive corresponds to which
probe. Based on the approach discussed so far, this would be possible, as in the
case of a probe event, the related receive event would be the next one where the
parameters of the message envelope match those of the probe event. In the case of a
matching probe event, the iterator syntax would be sufficient for that purpose.
During the development of this thesis, the OTF2 and Score-P developers undertook
concurrent efforts to standardize the events for regular and matching probes. Having
the same event representation for the probe and the matching probe would be
advantageous, as it would allow for analysis in the same manner. Since there should
be a possibility that a receive may be correlated to its probe, it is not possible to
apply the event suggestion for a regular probe for both, the probe and the matching

probe. Given that the message handle is strictly necessary to receive a message that

22

3 Analysis of Message Probing

was probed with a matching probe, the message handle ID should be part of the
event data. Furthermore, the introduction of a distinct matched receive event is
not advisable, as it would necessitate modifications to the existing analysis, since
the regular receive event is a well-established trigger for specific pattern recognition
algorithms. Accordingly, an additional event containing the message handle ID is
stored in a matched receive region in front of the receive event. This event is called
a match event. The regular probe still requires the message envelope to be able
to correlate it to its receive event. Therefore, a probe event is written for both
matched and regular probes, comprising the call-specific information pertaining to
the message envelope and an additional message handle ID. To distinguish between
matching and regular probes, the message handle ID equals zero in case of regular
probes. Score-P is responsible for storing the message handle IDs in the event data.
The measurement system assigns consecutive message handle IDs, starting with the

value of 1, which leaves the value of 0 for regular probes.

>

'E)[S]Send) A [E)[S]Send]

Probe D Recv D} Mprobe D Mrecv DDE

time time
Enter Leave Send Enter Leave Send
D Recv D Probe D Recv D Probe] Match

processes
processes

@
@

(a) lllustration of the Events in Regular Probes. (b) Illustration of the Events in Matching Probes
and Matched Receives.

Figure 11: Illustration of the Events in Probe Calls.

Figure [11] illustrates the sequence of events recorded for the regular and matching
probes. In the case of the nonblocking variants, the event sequence would be
similar when the probe is successful, and no specific event would be recorded for an
unsuccessful probe. As explained above, it is not possible to correlate the regular
probe and the receive in a multi-threaded context with certainty. In the case of
matching probes, it is possible for threads to share access to the message handle, with
one thread executing the matching probe operation and another thread executing
the matched receive operation. In this case, a correlation can still be made via the
message handle. Scalasca is currently only able to handle pure MPI applications or
multi-threaded applications using the option MPI_THREAD _FUNNELED, i.e., only the
main thread invokes MPT calls. Consequently, in applications that can be analyzed
by Scalasca, MPI calls can only occur on one location per process. Therefore, the
description of the implementation of the individual analyses assumes that a probe

event record occurs on the same location where the corresponding receive takes place.

23

3 Analysis of Message Probing

3.2 Timestamp Correction

The process calling the probe synchronizes with the peer process that is calling the
send. Accordingly, a clock condition must be met: The send has to start before the
probe returns, namely the timestamp of the send event has to be prior to that of
the probe event. However, due to unsynchronized clocks it may happen that the
recorded timestamps do not reflect the actual order of events, resulting in a scenario
where the probe event occurs before the send event. This is referred to as a clock
condition violation. Such a clock condition violation has to be addressed through the
timestamp correction. This is achieved through two phases, the so-called forward
and backward amortization. Initially, the steps required to incorporate probe events
during the forward amortization are examined. The forward amortization takes place
in a forward replay. Here, the event data is exchanged when communication events
are encountered in the traces using a similar communication operation. In order for
the replaying process to perform any action upon appearance of a probe event in
the trace, a callback must first be registered that ensures the invocation of a specific
method when a probe event is encountered. To identify a clock condition violation
in the probe, it is necessary to compare the timestamps of the send and the probe
events. Consequently, the callback method for a probe event must post a receive
operation with the parameters that are stored in the event data to receive the event
data from the send. Now, the algorithm described in Section [2.2.2] can be applied in
the same manner as for a send-receive pair, with the exception that the timestamp

of the probe is taken into account, rather than that of a receive.

As previously stated, the analysis assumes that the probe and the receive event occur
on the same location. In the absence of a clock condition violation in the send-probe
pair, it follows that the subsequent receive, which received the probed message
during the original execution of the application, cannot have such a violation. This
is because a probe must always precede the corresponding receive. In the event of a
clock condition violation in the send-receive pair, a corresponding violation must also
be present in the send-probe pair. This is due to the fact that the events on a given
location must align with the logically correct sequence. During the forward replay,
the probe event would be encountered first, and the forward amortization would
correct the violation by shifting the event responsible for the violation, namely the
probe event, as well as any subsequent events, including the receive event. Therefore,
at the point where the replay reaches a receive event that represents a probed receive,

it is no longer possible for a clock condition violation to be present.

Two remaining weaknesses are identified in this method. Firstly, the transmitted
event data is received when the probe event is encountered. However, the analysis

process responsible for that location still invokes a receive call when the receive

24

3 Analysis of Message Probing

event is reached in the trace. In the case of a probed receive, the execution of this
operation must be prevented, otherwise a deadlock will occur. A similar problem
arises if the same message has been probed several times. Here, the analysis process
may only initiate a receive operation when encountering the first of that probes,
since this represents the synchronization and the processes would deadlock if the
receive operation is posted multiple times, as there is only a single related send
operation. To address these issues, it must be possible to ascertain whether a probe
event with identical parameters has already occurred before the probed message was
received. In the case of a receive event, it is crucial to be able to determine whether
it is a probed receive. As a probed receive can be disregarded in the timestamp
analysis, there is no requirement to pass the data received when the probe event was
encountered to the callback function of the corresponding receive event. Consequently,
the data structure of an unordered set would be sufficient to retain the information
about previously encountered probe events during the replay, whose related receive
events have not yet occurred. A struct can be defined that contains variables for
communicator, source rank, message tag, and message handle ID. Moreover, it offers
an equality operator. Upon detection of a probe event in the trace, an instance of the
aforementioned struct is created using its arguments. If an entry matching the struct
data is already present in the unordered set, the callback function for the probe will
return without invoking a receive operation. Otherwise, the receive operation and
the forward amortization are performed, and the struct instance is then added to
the set. When a match event is encountered, its message handle ID is stored in a
process-locally accessible variable. The default value for the aforementioned variable
is zero, which corresponds with the message handle ID of a regular probe. The match
event occurs in the same matched receive region as the receive event. Therefore,
no other match or receive event can be in between. Finally, when a receive event
is reached, it is checked if a struct instance, containing the communicator, source
rank, and message tag obtained from the receive event as well as the message handle
ID that is stored in the process-local variable, exists in the unordered set. In this
case, the receive event represents a probed receive and the callback method returns
after deleting the instance from the set. From this point on, another probe with the
same arguments would probe for a new message. In addition, the message handle
ID variable is set to zero again. Adopting this approach would resolve the clock
condition violations in send-probe pairs. However, as backward amortization has
not yet been considered, there is a risk that the correction of other violations could

result in the creation of a new violation in a probe.

Figure [12] illustrates the forward amortization for a clock condition violation in a
send-receive pair. The send (S), receive (R) and probe (P) events are denoted with

their first letter. For the sake of clarity, the enter and leave events are not shown.

25

3 Analysis of Message Probing

processes
processes
>

time time

(a) Illustration of a Clock Condition Violation (b) The causing event (R) and the subsequent
in a Send-Receive Pair. event (X) are shifted forward in time.

Figure 12: Forward Amortization to correct Clock Condition Violation.

An arbitrary event is denoted as X. The solid arrows illustrate the message exchange
at runtime, while the dashed arrows show the synchronization between the probe
and the send. Here, a clock condition violation is indicated by an arrow pointing
backwards in time. Figure shows such a violation between the receive event on
process A and the send event on process B. During the forward replay, the related
send event timestamp is received by process A, and the clock condition violation is
rectified by shifting the receive event to occur after its send event. Afterward, also

the following events are shifted. In this case, this concerns event X, and the result is

shown in Figure [12b]

A

A S — X —RHXF

processes

-

time

Figure 13: lllustration of a Clock Condition Violation that is caused by Backward Amorti-
zation.

The backward amortization is performed to restore the length of local intervals
between events. In this example, the send event on rank A would be shifted. As this
takes place during a backward replay, the timestamp of the receive event on rank
B is received when the send event on rank A is encountered. To avoid new clock
condition violations, the shift of the send event is limited to the received timestamp.
The current approach does not handle probes in the backward amortization, which
could result in a new clock condition violation. As illustrated in Figure the
limiting factor for the send shift is the receive timestamp, not the probe timestamp.
Consequently, in case of a probed receive, the timestamp of the probe must be

transferred instead of that of the receive event. In order to implement this, it is

26

3 Analysis of Message Probing

necessary to determine whether a receive is a probed receive at the time the receive
event is encountered. The application of the same strategy as in the forward replay
will not yield the desired result, as a probe must be followed by a receive, but the
converse holds not true. Furthermore, a message can be probed multiple times, which
could potentially lead to complications when traversing the trace backward, as the
last probe, which is the first in time, would be relevant. However, the information
regarding the existence of an additional probe for that message is not known in
advance. It thus follows that the information pertaining to whether a receive is
probed and whether a probe is synchronizing must be known prior to the backward
replay. Two options are considered. In the forward replay, the correlation of probes
and receives can be stored and subsequently reused in backward replay. Scalasca
provides a unique identifier for each event, which could be used to create a map
where the receive event ID is the key and the relevant probe ID is the value. This
would necessitate the aforementioned struct being stored not as a set but as a map,
where the struct is the key and the probes event ID is the value. Storing the set
beyond the runtime of the forward replay and preventing the deletion of elements
does not serve the desired purpose, as it does not address the issue of probe events
occurring with the same arguments and being associated with different receives
over the entire runtime. Another possibility is to move this matching to Scalasca’s
preprocessing step. This would require to store the event ID of the associated event
within the event representation itself, thus enabling access during the replays. In the
case of a probe event, the addition of a further member to the event representation
would not be an issue, given that almost every probe is associated with a receive.
Only those that are repeated probes for the same message should be ignored, and
the variable can be assigned a specific value indicating this. In the case of receive
events, the additional parameter can be considered unfavorable. There are numerous
applications that do not utilize message probing. The presence of a default value
for the parameter would indicate that the receive has not been probed. Providing
that parameter would necessitate storage, independent of its usage. To address this
issue, it can be considered to introduce a specific event representation for probed
receives. While reading the trace data into the main memory, a receive event can be
classified whether it is probed and Scalasca would represent the event internally as a
probed receive containing the additional parameter. Given that the required storage
space is that of an integer and that the preprocessing approach would allow a single
matching process, rather than one occurring during each replay, this approach has
been implemented in this thesis. Since the proposal with internally different event
representations would require additional implementation effort, it has not yet been

realized and is left for future work.

27

3 Analysis of Message Probing

Because of the related event IDs present in the event representations, handling probes
in the timestamp correction can be simplified. During forward amortization, no
additional information has to be stored. When a probe callback is invoked, it is
checked whether the receive ID accessible in the event representation of the probe
is valid (e.g., not the special value for repeated probes). In case of a valid ID, a
receive is invoked, and a correction takes place in case of a violation. Otherwise,
the callback returns immediately. The same process is followed when a receive
callback is invoked. In case of a valid probe ID, the callback returns immediately and
otherwise the callback code is executed. A similar method is used during backward
amortization. Since the receive is encountered first, there the probe ID is checked.
In case of a probed receive, no message is sent. When a probe with a valid receive

ID is encountered, its timestamp is sent.

Implementation of Event Matching

In the preprocessing, the matching of probes and receives can be performed during
a forward pass of the local trace. Whenever a probe event is encountered, it must
be stored in the case that no other pending probe exists with identical parameters.
Accordingly, the aforementioned structure, comprising the message envelope and the
message handle 1D, is adequate for reuse as a key in a map, with the event ID of the
probe serving as the value. On the occurrence of a matching instance of this struct
already present in that map, the probe is not stored, as it is a repeated probe for the
same message. Upon encountering a match event, its message handle ID is stored in
a process-local variable that is initialized with a default value. When a receive event
occurs, it is checked whether an instance of a struct containing the message envelope
along with the message handle ID obtained from the process-local variable, serves
as a key in the map. In this case, a match is identified, and the probe event ID is
stored in the event representation of the receive. Likewise, the ID of the current
receive event is stored in the probe event representation, which can be accessed via
its unique identifier. The previously used entry is removed from the map and the

process-local variable is set to its default value.

3.3 Wait State Analysis

The wait state analysis takes place during the first two replays of the analysis phase,
where the first replay, a forward pass, is used to determine Late Sender wait states.
The subsequent backward replay is necessary to detect Late Receiver wait states,
and for Late Sender instances the synchronization point information is transferred
back to the peer process. A probe call can only reveal Late Sender waiting time.

However, as shown in Figure it is possible to have a Late Sender and a Late

28

3 Analysis of Message Probing

Receiver wait state in the same communication context. The current analysis already
detects such a Late Receiver wait state in the backward pass, as the synchronization
only affects the send and the receive. The analysis must therefore be extended to
include Late Sender wait states in probe regions and to classify these instances,
determining whether they correspond to a Late Sender Wrong Order situation. It is
first evaluated how probe events can be integrated into the analysis to identify Late
Sender wait states before considering how to detect wrong order situations.

Late Sender wait states are detected during a forward replay. First, a callback
function must be registered that is invoked whenever a probe event is encountered
during the first forward pass. In essence, the information required by the probe is
identical to that which the receiver utilizes to identify a Late Sender: The event
data of the corresponding send. Figure [14]illustrates the communication replay to
recognize a Late Sender. Rank A encounters a send event in the trace and sends its
event data, along with the event data from the enter and leave events, to B. On rank
B a probe event occurs and the corresponding callback function is invoked. Here, it
must be checked whether the given probe has a valid receive event ID. This is to
ensure that it is not a repeated probe for the same message, and therefore it possibly
includes waiting time. In the example depicted below, the ID is valid. Consequently,
a receive operation is performed inside the callback function to obtain the message
data. The algorithm to detect a Late Sender instance in a receive region can be
reused to detect them in a probe region. The waiting time is calculated as the time
difference between the timestamp of the enter event of the probe region and that of
the remote send enter event. In case the waiting time is greater than zero, a Late

Sender wait state is detected.

A

A ESend]!
485 I ST

waiting time

processes

time

Enter 2H Leave Send I:l Recv D Probe

Figure 14: Illustration of the Communication Replay for the Late Sender Wait State in
Probe.

It is not possible for a probed receive to have a Late Sender, as the return of the
probe ensures that the send operation on the peer process was initiated. In the
context of the wait state analysis, which identifies instances of Late Sender wait

states, such a receive may be skipped. However, to avoid any potential interference

29

3 Analysis of Message Probing

with other analyses of inefficiency patterns that may be triggered when a receive
event is encountered, like the classification of Late Sender Wrong Order situations, it
is ensured that the probed receive event has access to the event data received in the
probe. As a consequence of the callback infrastructure, the data is only accessible
within the context of the same callback. One way to ensure the accessibility would
be to resend the message to the same rank, as MPI allows the source and destination
rank of a message to be identical. However, when encountering the receive event, this
would result in a mismatch as the receive operation posted there expects a message
from the original source of that message. The use of a wildcard parameter for the
source rank in this context could potentially lead to unexpected behavior in the
replay if other messages are sent that randomly match such a receive. Using the probe
event ID available in a receive event would allow distinguishing which rank has to be
specified in the receive operation, depending on whether the ID is valid. However,
re-sending messages within the same process does not appear to be a favorable
solution, which is why this approach has not been pursued further. The approach
implemented in this work employs a data structure to store the aforementioned
information at a higher level until the receive event occurs. A struct is defined that
holds the event information from the send region, including the enter, send, and
leave events. When a message is received in the callback function of a probe, such
a struct instance is created and put into a map with the receive event ID as a key.
Upon encountering a receive event, its event ID is searched for in the aforementioned
map. Based on the result of the lookup, the event data from the related send is
either extracted from that entry or a receive operation is invoked, as the data were
not yet obtained. Upon reaching a receive event, the timestamp of that event is
compared to that of the Late Sender instances in the buffer to ascertain whether an
instance is associated with a wrong order situation.

Although the aforementioned example illustrates the detection of a Late Sender in
probe calls, the detection in matching probe calls functions identically, as the same
event sequence is considered. While there is also a match event in the receive region,
this is solely utilized in the preprocessing step and is disregarded in the described
replay.

It is now considered which additional steps are necessary to identify a Late Sender
Wrong Order wait state in a probe. The current analysis determines a wrong order
situation in a receive region by storing the Late Sender occurrences in a ring buffer.
When a receive event is encountered, the received timestamp—corresponding to the
send event—is compared with the send timestamps accessible via the Late Sender
instances stored within the ring buffer. The Late Sender instances where the send
enter timestamp is greater than the timestamp of the send enter event corresponding

to the current receive event are classified as a wrong order situation. A probe

30

3 Analysis of Message Probing

exhibiting a Late Sender wait state can correlate with a wrong order situation
irrespective of whether the message that may be received earlier is probed or not.
Figure [15]illustrates the aforementioned situation. Process C probes for the message
from rank A and reveals a Late Sender wait state. This wait state is calculated
during the replay where the event data from the send event are received when the
probe event is encountered. When the subsequent receive event in the region Recvl
is reached, no message is received, but the event data from the corresponding send
can be accessed through the data structure described above. When the analysis rank
responsible for rank C encounters the following receive event, it obtains the event
data related to the send operation on rank B. In the case the previously detected
Late Sender is buffered, the enter timestamp of Send! can be compared with the
enter timestamp of Send2. The latter one is accessible via the stored Late Sender
instance, and the wait state could be classified a wrong order situation. Scalasca’s
callback infrastructure already invokes a callback whenever a Late Sender instance
is detected, and that instance is added to the aforementioned ring buffer. It thus
follows that the Late Sender instances revealed in probe calls are put into the same
ring buffer as those identified in a receive, which enables the classification of wrong
order situations. While it would be possible to classify a previously detected Late
Sender as a wrong order situation not only when a receive event occurs, but already
when a probe event is encountered, this would require another distinction between
probed and regular receives. Instead, it is sufficient to only check for wrong order
instances when receive events are encountered, which is favorable for reasons of

consistency, and therefore implemented in this thesis.

processes

B end1 Y1

| !

waiting time

time

Enter Leave Send |:| Recv D Probe

Figure 15: Ilustration of the Communication Replay for the Late Sender Wrong Order
Wait State in Probe.

31

3 Analysis of Message Probing

3.4 Delay Analysis

In examining the delay analysis for probes, it is essential to differentiate between
two scenarios: The first, a simple Late Sender case in which the send and the probe
are synchronizing, and the second, a case involving a simultaneous Late Receiver, in
which the send has two synchronization points, one with the probe and one with the
receive. Since the implementation of the first scenario is relatively straightforward,

it is considered first.

As the delay analysis takes place in a backward replay, the trace is traversed from back
to front. When a receive event is encountered, it is checked whether it reveals a Late
Sender wait state and associated delay costs for the wait state must be calculated.
In this case, the synchronization interval is determined, using the synchronization
point information that was stored during the former replays. Subsequently, the
time vector for the specified interval is calculated and stored into the message data,
as well as the waiting time. The initiation of a send operation to transfer the
entire message from the receive event occurs regardless of whether or not a Late
Sender wait state is present. When the analysis process responsible for the peer rank
encounters the send event, the aforementioned event data is received. Subsequently,
the synchronization point information is used to determine, whether a synchronization
point but no waiting time is stored, thus indicating a Late Sender wait state. In
case such a synchronization point is stored, the time vector and the waiting time is
extracted from the remote event data. Only in case there was a Late Sender, the
previous synchronization point (in time) is determined. A delay vector containing
the execution time differences except waiting time as explained in Section is
calculated, and the waiting time can be mapped to short- and long-term delay costs.
This method can be adopted for the probes. Here, once the local time vector has been
calculated, the message data from the probe must be transferred to the process where
the corresponding send event occurs. As the critical path analysis (see Section
also takes place during this replay phase, the data from the receive event are relevant
from the sender’s perspective. Therefore, both the probe and the receive event data
should be transmitted. It is not possible for the sender to ascertain whether a related
receive was probed. In the original algorithm, a single receive call is posted upon
the occurrence of the send event. In the backward traversal the receive event is
encountered before the probe event, and the information whether it is a probed
receive is available. Two strategies are conceivable. In case of a probed receive, the
message data from the receive event is stored in an internal data structure until the
related probe is encountered. At this point, a single message is sent containing both
the event data from the receive and the probe. An alternative approach would be

to send individual messages when the events are encountered, but to include the

32

3 Analysis of Message Probing

information as to whether the receive is probed in the transferred message data from
the receive, as this message is sent first. Once more, it is essential to verify the
ID in the receive event to prevent the handling of repeated probes. On the rank
where the send event occurs, the message data from the receive event is retrieved
first. This allows to ascertain whether it is a probed receive. If so, another receive
operation is initiated to obtain the message data sent by the probe. Subsequently,
the algorithm can be employed to calculate the delays and related costs. In the case
of matching probes, a problem arises when multiple matching probes are followed by
the same number of matched receives in an arbitrary order, all of which have the
same envelope. Due to the message handle ID, the probe events are correlated to the
correct receive event. However, the messages sent during the replay will not match as
desired. The MPI standard ensures that pending messages with the same envelope
are received in the order they were sent. Consequently, when the last of the probe
events (in time) is encountered during the backward replay, a message is sent which
indicates that it was a probed receive. Accordingly, when this message is received
upon encountering the corresponding send event on the peer process, a second receive
operation is invoked. However, instead of receiving the message data from the receive
event that matches the probe, the message data from the second to the last probe
event would be received. In the replay, all messages for the matching probes are sent
before those for the receives, reflecting the order in which the events are encountered.
To address this issue, different communicators for the messages sent for probe events
and those sent for receive events can be utilized. Scalasca already provides the
infrastructure for this by storing duplicated communicators for those communicators
used in point-to point-communication. These duplicated communicators can be used
for this purpose. In this thesis, the approach of sending individual messages when

the probe and receive events are encountered was implemented.

The situation becomes somewhat more complex when two synchronization points are
present in the send. Figure [16|shows a Late Sender and Late Receiver wait state in
the same communication context. For the sake of simplicity, only the communication-
specific events are shown in this timeline diagram and the enter and exit events are not
depicted. The communication during the execution of the application is illustrated
with solid arrows, whereas the communication during the current backward pass
is illustrated with dashed arrows. During the previous communication replays, the
depicted wait states were identified and related synchronization point information
was stored. Upon storing the related synchronization point information, the first
problem is encountered. As explained before, the synchronization point is stored when
encountering a wait state, and it is transferred to the peer process in the subsequent
replay. Two maps are utilized for the purpose of storing the synchronization point

information. The synchpoint map contains the event where the synchronization point

33

3 Analysis of Message Probing

occurs as a key with the value being a struct of data about the wait state. This
includes for the waiting time. The second map, the synchranks map, as well contains
the event as the key and a set of numbers of the synchronizing ranks as the value.
The rank numbers refer to the rank of the corresponding process when using a global
communicator. In the case of point-to-point communication, the set comprises only

a single rank number, that of the peer process.

Late Receiver

processes
>
I

R1 L__| - Foo

TR D

Late Sender

0 1 2 3 4 5 6 7 8 timeins

Send I:‘ Recv I:‘ Probe

Figure 16: Ilustration of the Communication Replay for the Delay Analysis.

Since the Late Sender wait state is detected in the first replay, a synchronization
point on rank B is stored by inserting a pair consisting of the probe event and the
wait state information into the synchpoint map, as well as another pair comprising
the probe event and the rank number of process A into the synchranks map. In
the subsequent replay, the trace is traversed backwards and the Late Receiver wait
state is identified when process A reaches the send event and obtains the event data
from the receive event sent by rank B. As the received event data indicates that the
receive was probed, a subsequent receive operation is initiated to obtain the event
data from the probe. At the time the Late Receiver is detected, a synchronization
point is stored on process A. This entails the incorporation of the send event and
wait state data into the synchpoint map, along with the send event and the rank
number of process B into the synchranks map. Next, the message data from the
probe is received, which transfers the synchronization point information of the Late
Sender wait state. This would lead process A to store a pair consisting of the send
event and the wait state information into the synchpoint map. The waiting time
stored would be zero, as the waiting time occurred on the peer process. Another
pair comprising the send event and the rank number of process B would be inserted
into the synchranks map. Since both maps already contain the send event as a key
due to the Late Receiver wait state, the insertion would fail, and the maps would

remain unchangedﬂ Simply storing one synchronization point in the send event,

IThis behavior is due to the use of a C++4 STL map. However, overwriting the existing data
would not solve the underlying problem either.

34

3 Analysis of Message Probing

would lead to erroneous behavior. The delay analysis functions in a manner whereby
the time vector between the current and the previous synchronization point (in time)
is calculated and transferred to the process that causes a wait state. In case of Late
Sender wait states, this entails the transfer of the time vector from the receiver’s
rank, where the wait state originates, to the sender’s process, which is responsible
for that particular wait state. This allows for the calculation of the delay vector.
Figure (16| illustrates this, wherein the dashed arrow indicates that the probe event
triggers a message to be sent to process A, where the send event should trigger a
corresponding receive operation.

In case of Late Receiver instances, the wait state occurs on the side of the sender.
This indicates that the receiver’s process is responsible for calculating the delay.
Consequently, a message is sent when a send event indicates a Late Receiver wait
state. This message must be received when the corresponding receive event occurs
on the peer process. Here, the synchronization point information is employed to
ascertain whether a synchronization point is the counterpart of a Late Receiver. This
wait state is indicated by an entry of the send event in the synchpoint map, where
the waiting time is zero. Only in case of a Late Receiver this message exchange
takes place. With regard to the backward replay, the message is transmitted in
reversed direction. As illustrated in Figure [L6] this is depicted by the dashed arrows
originating from S2 and terminating at R1, as well as from R1 extending to S2. It is
imperative to exercise caution when transmitting messages between two processes in
opposite directions to prevent the occurrence of deadlocks. Returning to the actual
problem, the analysis rank responsible for process B would encounter the receive
event in region R1. It would then search for the previous synchronization point on
its rank, which occurs in the probe event. The time vector would be calculated,
containing the execution time of routine Bar, and subsequently the vector would be
transferred to rank A. Rank A also determines its previous synchronization point.
This occurs in routine R1 and the time vector would contain the execution time
of routine Foo. The local time vector would be transferred back to rank A, due to
the Late Receiver wait state. The interval between R1 and S2 would be incorrectly
mapped to the interval between Probe and R1. The interval that should actually
be mapped to the interval between Probe and RI would be empty, as both are
synchronized with §2. This demonstrates that the existing analysis is unable to
accommodate such scenarios, as it would lead to a discrepancy in the synchronization
intervals on the sender’s side, resulting in an erroneous mapping of the delays. For
the current analysis to be effective, it is essential that synchronization intervals
containing the same processes do not overlap. The analysis relies on the assumption
that an event can only participate in one synchronization point. However, in the
case of probes, this is not always the case. The development of an enhanced analysis

that can handle this case is beyond the scope of this thesis. a5

3 Analysis of Message Probing

In order to enable the delay analysis for at least one of the two wait states, this work
excludes Late Receivers in that case, as Late Senders are much more common in
practice, and thus have a higher impact. As a side effect of this, the implementation
also becomes more straightforward. In the second replay the Late Receiver wait states
are detected, and the synchronization point information of the Late Sender instances
is transferred to the sender side. During the backward replay it must be ensured that
the receive operation, triggered by the occurrence of a send event, obtains the data
from the receive event. This allows to be aware whether the receive was probed and
therefore a second receive operation must be initiated to receive the message data
from the probe. when the message data from the receive event are retrieved, the Late
Receiver wait state is identified, and its synchronization information stored prior
to the reception of the Late Sender synchronization point information transmitted
during the probe. Before storing the Late Sender synchronization point information,
it is possible to ascertain whether the send event is already part of the synchpoint
map. In such a case, and if the value for the related waiting time is greater zero, a
Late Receiver would be indicated. The Late Receiver synchronization point would be
deleted, and the Late Sender synchronization point stored instead. This approach
permits the analysis of delays for the Late Sender and, at the same time, the
detection of Late Receiver instances. However, due to the absence of synchronization
point information in concurrent Late Receiver wait states, these are disregarded in
the delay analysis. Considering the Late Receiver instead of the Late Sender in
the delay analysis would be far more complicated, as not only the received Late
Sender synchronization point must not be stored. Moreover, on the peer process
where that wait state occurred, the synchronization point must also be deleted to
ensure the accurate mapping of the synchronization intervals. This implies that
during the subsequent replay, the synchronization point data for Late Receivers
must be transferred to the receiver’s side, along with the information to delete a
synchronization point in the probe event that was stored for a Late Sender instance.

As previously stated, this thesis implemented the first approach.

3.5 Critical Path Analysis

The critical path analysis is conducted concurrently with the delay analysis during the
same replay. As discussed in the previous Section, a Late Receiver instance occurring
in the same communication context as a Late Sender is not considered in the delay
analysis. Consequently, they cannot be taken into account in the critical path analysis.
Section [2.2.2] explained that the critical path switches to the rank responsible for a
wait state whenever a synchronization point is encountered. This signifies the rank

which exhibits the delay. However, in the absence of synchronization point data for

36

3 Analysis of Message Probing

the aforementioned instances of the Late Receiver, the critical path would remain
on the respective rank, potentially resulting in the inclusion of waiting time, which
is inconsistent with the definition of the critical path. It is therefore necessary to
take this knowledge into account when considering this metric. Apart from that,
the algorithm can easily be extended to handle probe events. The backward replay
already exchanges messages correctly for the delay analysis, and the critical path
analysis takes place in the same replay. Therefore, it is sufficient to add a flag
indicating whether the ownership of the critical path should be transitioned to the

peer process to the message data that is transferred to the corresponding process.

Late Receiver

“—I R1VDH Foo - Finalize ‘

processes
hed

m

T IO D) e)

Late Sender

0 1 2 3 4 5 6 7 8 9 10 11 timeins

| Send |:| Recv |:| Probe

Figure 17: Illlustration of Critical Path Detection.

Figure illustrates the detection of the critical path in case of a Late Sender
and a Late Receiver wait state in the same communication context. The red
background denotes the detected path course, the solid arrows indicate the direction
of communication during the execution of the program, and the dashed arrows denote
the relevant point-to-point communication for the critical path analysis. To enhance
the clarity of the illustration, only point-to-point specific events are depicted; those
pertaining to collective operations or enter and leave events are not included. Such a
collective event would be encountered in the Finalize region, where a synchronization
takes place to ensure that all MPI processes exit the application simultaneously.
This is replayed by a collective operation that determines the rank which enters the
finalize call last, and therefore marks the endpoint of the critical path. In Figure
this results in the analysis process responsible for rank A setting the ownership
flag for the critical path. When encountering the probe event on rank B, a flag is
sent indicating whether the peer process should assume the possession of the critical
path. As the current owner of the critical path is rank A, the aforementioned flag is
false, and the critical path remains on rank A. Upon encountering the receive event
on process A, the flag is set to true, as routine RI exhibits a wait state due to a
delayed sender. This information is received by process B at the time the send event
in region S1 occurs. Consequently, process B sets the ownership flag and the critical

path continues on that rank. Due to the missing Late Receiver synchronization

37

3 Analysis of Message Probing

point, there is no message exchange from the send event in S2 to the receive event
in R1. Therefore, the necessity of transferring the critical path ownership cannot be
accomplished. At this juncture, the actual critical path would transition to process
B and revert to rank A upon encountering the probe event, given the presence of
waiting time. If process B had been the last to enter the finalize call, the critical
path would have been determined correctly. In this scenario, the endpoint of the
critical path is at rank B, and thus the ownership flag would be set on rank B at
the beginning of the analysis. The next communication takes place when the probe
event is encountered, and here the critical path would be transferred to rank A. The
remainder of the critical path analysis would follow the aforementioned description.
As shown in the example, the detected critical path is not entirely correct. But for
the most common use case of probes to determine the required message buffer size
of the receive usually following shortly after, the error in the critical-path profile
is rather small. In addition, having both a Late Sender and a Late Receiver in a
communication context is a corner case, and thus the presented approach seems
to be a reasonable compromise to at least approximate the critical path until the
infrastructure is fixed to handle two synchronization points for one event. This is

left for future work.

38

4 Evaluation

The analyses for probing messages presented in the previous chapter were prototypi-
cally implemented in the Scalasca analyzer. This chapter presents an evaluation of
the implementation. First, a brief overview of the experimental setup is provided,
followed by the presentation of representative microbenchmarks that illustrate the
functionality of the probe handling. Subsequently, the real-world application ParFlow
is analyzed to demonstrate that the inefficiency patterns observed in probes are not

merely theoretical, but rather manifest in actual applications.

4.1 Setup

All measurements presented in this chapter were conducted on the JURECA su-
percomputer [27], which is operated at the Jillich Supercomputing Center (JSC)
using the standard compute nodes. The cluster provides 480 standard compute
nodes. Each of these nodes is equipped with two AMD EPYC 7742 processors, each
having 64 cores and running at 2.25 GHz, providing a total of 128 cores per node.
These nodes contain 512 GB of DDR4 (Double Data Rate 4) memory, configured
in 16 modules of 32 GB. Networking is provided by InfiniBand HDR100 (NVIDIA
Mellanox Connect-X6). The software environment included the Intel compiler, ver-
sion 2022.1.0, and ParaStationMPI, version 5.7.0, which offers an implementation of
the MPI standard. The SLURM job scheduler (Simple Linux Utility for Resource
Management) was utilized to submit jobs to the system, and therefore execute the

measurements.

4.2 Functional Evaluation

In order to demonstrate the functionality of the prototype implementation, different
test cases are considered. These include tests demonstrating the functionality of the
preprocessing matching, the timestamp correction and the analysis of Late Sender
wait states in probes. The Late Sender test cases also consider a wrong order
situation, as well as the situation where a Late Receiver in a send and a Late Sender
in a probe occur at the same time. The test codes are executed a single time to
generate the OTF2 trace data with a development version of Score—PEI that includes
the probe and match events. For specific tests, the same trace data is analyzed with

the Scalasca master branch available at the time of Writingﬂ and with a Scalasca

1https://gitlab,jsc.fz—juelich.de/perftools/scorep/— /commit/a518a74d859cdb324cb130e9decb61966e1dc525| [only
accessible for authorized accounts]

2https://gitlab.jsc.fz—juelich.de/perf‘cools/scalasca/— /commits/f42a922632594f1fdf0d283e1399a86aa2dbllbc [only
accessible for authorized accounts]

39

https://gitlab.jsc.fz-juelich.de/perftools/scorep/-/commit/a518a74d859cdb324cb130e9decb61966e1dc525
https://gitlab.jsc.fz-juelich.de/perftools/scalasca/-/commits/f42a9aa632594f1fdf0d283e1399a86aa2db11bc

4 Evaluation

version including the prototype implementationlﬂ of the probe handling in order to
compare the results and to see whether they match the expectations based on the
trace data. In the following, the test cases are visualized in the form of timeline

diagrams. The code can be found in the Appendix.

4.2.1 Test Case: Preprocessing Matching

To demonstrate the correct matching of probes and receive events during the prepro-
cessing, this test case includes matching probe calls and repeated probe calls. Figure
illustrates process A sending two messages to process B. B probes for both of
the messages, but for the first one with a matched probe. Subsequently, the second
message is received prior to the first. B then sends a message to rank A, and A
probes for this message two times before receiving it. The blue connections indicate

the expected matching.

A Sendn E} Probe ‘i] Probe D Recv/:IIE
B Mprobe I:_‘ Probe D Rech Mrecmndu
[— |

processes

time

‘ Enter Leave Send l:‘ Recv D Probe I:‘ Match

Figure 18: Test Case: Preprocessing Matching.

For verification, the test case was executed with debug output containing the matching
event IDs and the expected matching was confirmed. The repeated probe on rank A

was assigned a special value, indicating that it can be ignored in the analyses.

4.2.2 Test Case: Clock Condition Violation in Send-Probe Pair

The functionality of the timestamp correction cannot be illustrated by simply running
a test code, as a clock condition violation must be present. These violations arise
during the measurement due to the use of process local clocks. For the purpose of
demonstrating the implemented functionality, the timestamps in a measured trace
were manipulated to enforce such a violation. The timeline diagram in Figure
depicts the time course of the events after manipulation.

The timestamp of the probe event on rank A is prior to that of the send event on
process B. This represents a violation of the clock condition. As the Scalasca master
branch does not take probes into account, this violation remains undetected. In
the example illustrated in Figure [19] the algorithm only checks whether the clock

condition that the send timestamp must be prior to that of the receive holds true.

3 https://gitlab.jsc.fz-juelich.de/perftools/scalasca/- /tree/79-properly-handle- probing-of-messages?ref_type=
heads| [only accessible for authorized accounts]

40

https://gitlab.jsc.fz-juelich.de/perftools/scalasca/-/tree/79-properly-handle-probing-of-messages?ref_type=heads
https://gitlab.jsc.fz-juelich.de/perftools/scalasca/-/tree/79-properly-handle-probing-of-messages?ref_type=heads

4 Evaluation

A
B Probe I:l Recv Dm

time

‘ Enter Leave Send I:I Recv |:| Probe

processes

Figure 19: Test Case: Clock Condition Violation in Send-Probe Pair.

When applying the timestamp correction from the prototype implementation, the
depicted clock condition violation was corrected. This shows the correctness of the
implemented handling of probes in the forward amortization, since the events on
process B were shifted forward in time to guarantee the probe event occurs after the

send event.

4.2.3 Test Case: Clock Condition Violation in Send-Receive Pair

To demonstrate that the handling of probe in the backward amortization works as well,
the test case illustrated in Figure [12a] was utilized. Similar to the previous test case,
measured trace data was manipulated to exhibit the desired clock condition violation.
As explained in Section [3.2] the violation occurs in a send-receive pair. When using the
Scalasca master branch, this violation is fixed, but during the backward amortization,
a new violation in the preceding send-probe pair is introduced. The execution
of the timestamp correction, which includes the probe handling implementation,
corrected the violation in the send-receive pair as well. In addition, no violation in
the send-probe pair was created during the backward amortization due to the fact
that the algorithm transferred the probe timestamp, which marks the earliest point

in time until which the send event may be moved, to the peer process.

4.2.4 Test Case: Late Sender

The timeline diagram depicted in Figure [20] illustrates a sequence of events obtained
from the trace data generated during the execution of the code in Listing [2| on
three processes. It should be noted that the timeline diagram does not reflect the
actual execution times, as the send and receive operations consumed only a few
milliseconds. However, to be able to display them, the operations appear longer than
they actually lasted. The Late Sender wait states are enforced by invoking a sleep
function. Process A remains two seconds in the Sleep region, and process B one
second. Consequently, rank B spends two seconds in the Probe region, and process

C spends three seconds in that region. Therefore, the expected waiting time in the

41

4 Evaluation

Probe of rank B corresponds to two seconds. They are expected to be short-term
costs of the delay on rank A, that is revealed in the Sleep region. On rank C three
seconds of waiting time are expected in the Probe region. Two second of the waiting
time are anticipated to be long-term costs of the delay on rank A. The remaining
second is expected to be short-term costs of the delay caused by the Sleep region
on process B. Since process C is the last to enter the finalize call it is therefore
expected to be the endpoint of the critical path. Process A remains one second in
Finalize whereas process B and C spend almost no time in that call. Due to the
synchronization happening in a finalize call, a second of waiting time on rank A can
be expected here, which are long term costs of the delays on rank A and B. The
critical path is anticipated to mainly hold the times spent in the Sleep regions. It
is expected to start on process A and be transferred to process B when the send
event is encountered. It should transition to process C when the next send event is

encountered, and remains there for the remainder of the execution.

&
&) Jar=e (e Ioee or.]
I

(g}

D) e XN
| I

time

’ Enter n L('u\‘(' Send l:‘ Recv I:l Probe

Figure 20: Test Case: Late Sender.

When analyzing the trace data with the Scalasca master branch, no wait states except
the one in the Finalize region on rank A were identified. The critical path remained
on process C throughout the whole execution time, covering the time spent in the
Probe region. The waiting time in the Finalize region was analyzed to be short-term
costs of a delay detected in the Probe region. Using the prototype implementation,
the expected Late Sender wait states were identified. Moreover, the critical path was
detected correctly. It starts on rank A, transitions to rank B upon encountering the
send event, and then progresses from rank B to rank C when the next send event is
reached. Furthermore, the detected delay costs correspond to the expectations. The
analysis identifies 0.33 seconds of the wait state in Finalize to be long-term costs of
the delay in Sleep on rank B and the other 0.67 seconds being long-term costs of the
delay on rank A.

When it comes to the identification of performance bottlenecks in this test case,
relying on the analysis results obtained with the Scalasca master branch would be

inadvisable, as it would lead to the assumption that the Probe region is the function

42

4 Evaluation

that contributed the most time to the critical path and is responsible for the wait
state in Finalize. The analysis including the probe handling correctly identified the

Sleep regions to be the reason for the wait states.

4.2.5 Test Case: Late Sender Wrong Order

In order to demonstrate a wrong order situation, this test case requires execution
on at least three processes. The process with rank number zero within the global
communicator is responsible for probing and receiving messages from the other
processes. In Figure this process corresponds to process A. The messages are
probed and received in ascending order according to their source rank, starting
with rank C. The message of rank B is received last and thus establishes the wrong
order situation. All processes, with the exception of process A, spend the number of
seconds corresponding to their rank in a sleep call before sending a message to rank
A. For process B this time corresponds to two seconds, and three seconds for process

C. Figure 21| illustrates the chronological event sequence for the execution on four

processes.
1 | A0 e i e
Q B -{E) Sleep) IBEEET I3 Finalize - —

HE) Steep) JBEER 36 Fineiie

D (-[E) Steep) RBEER 36 Fivaiize

‘ Enter JI] Leave [S] Send [Reev [Probe ‘

Figure 21: Test Case: Late Sender Wrong Order.

Rank A spends two seconds in the first Probe region and another second in the
subsequent Probe region. Again, the time spent in the send and receive operations is
insignificant. B remains in the Sleep region for one second, C for two, and D for three.
Consequently, B spends two seconds in the Finalize region and C remains there for
one second. A and D almost spent no time in there. The Scalasca master version
identified the time spent in the Finalize region on rank B and C as waiting time.
These are assigned to be short-term costs of a delay exhibited in the Probe region on
process A. The critical path is detected on rank A for the entire execution. The Probe
region represents the most significant contributor to the critical path and therefore
lead to the assumption that improving the performance of the application is not
possible, as probe is an MPI call. The analysis including the probe handling proves
this assumption wrong. It identifies wait states within the first two Probe regions

on rank A and classifies them as wrong order situations. The first one includes

43

4 Evaluation

two seconds of waiting time and the following one second. The time spent in the
Sleep region on rank C reflects the direct cause for the wait state in the first Probe
region. One second of the time spent in the Sleep region on rank D is identified to
be the delay causing the wait state in the second Probe region. The analysis as well
detects three seconds of waiting time in the Finalize region. These are classified
as long-term costs of the delay in the Sleep regions on rank C and D, where rank
C is responsible for 1.33 seconds and rank C for 1.67 seconds. The critical path
is identified to remain the whole time on process D. Accordingly, the Sleep region
contributes the greatest amount of time to the critical path and is identified as a

delay, which in turn indicates that it is the performance bottleneck.

4.2.6 Test Case: Late Sender and Late Receiver

The timeline diagram depicted in Figure 22| shows a simultaneous Late Sender and
Late Receiver wait state. The trace data reveal that process A spends about 0.1
seconds in the FillArray routine, another second in the Sleep! region, and slightly
more than two seconds in the Send routine. Process B spends about one second in
the Probe region, two seconds in the Sleep2 routine, and almost no time in the Recv

region.

A - EJLOIN-E) FilAmayJBH{€) Slecpt JBHE)[S]Send
s B e S
1 1

time

processes

l@ Enter n Leave Send l:‘ Recv D Probe

Figure 22: Test Case: Late Sender and Late Receiver.

First, the results obtained with the Scalasca master branch are examined. There,
two seconds of Late Receiver waiting time are identified in the Send region. The
delay analysis reveals 1.29 seconds of short-time delay costs in the Sleep2 region
and another 0.71 seconds in the Probe routine. The critical path is identified as
remaining on rank B throughout the entire execution. When using the prototype
implementation of the probe handling, the analysis results differ. The two seconds of
Late Receiver waiting time are still identified, but moreover, an additional 1.1 seconds
of Late Sender waiting time is identified within the Probe region. The detected Late
Sender wait state has an impact on the critical path and the results of the delay
analysis. Since the simultaneous Late Receiver wait states are not handled in the
delay analysis, only the delay costs related to Late Sender wait state are calculated.
These correspond to a second of short-term delay costs in routine Sleepl. The critical
path concludes at rank B, where the Finalize routine is entered last. It contains the

Recv and Sleep2 regions on that rank and then transitions to rank A, because in the

44

4 Evaluation

Probe region waiting time occurred. On rank A the critical path covers the Sleepl,
FillArray and Init regions. Despite the delay and critical path analysis ignoring the
Late Receiver wait state, the critical path was correctly identified due to the fact that
process B entered the finalize call last. The delay costs related to the Late Sender
walit state are determined as one second in Sleepl and 0.1 seconds in the FillArray
routine.

When taking a look at the delay analysis and critical path analysis results, the Scalasca
master version identifies routine Sleep2 as the primary candidate for improvement in
runtime, but also it identifies the Probe routine to be the responsible for waiting time.
The Scalasca analysis including the probe handling identifies Sleep1 and FillArray to
be responsible for waiting time. Furthermore, when taking a look at the critical path
it becomes clear that Sleep2 is another candidate for optimization. Accordingly, the
performance bottlenecks could be more effectively identified with the probe handling,
as the current Scalasca master version completely misses the delay in Sleep! and

therefore detects an erroneous critical path.

4.3 Real World Example

In order to demonstrate the additional value that probe handling offers in the analysis
of production codes, this section will evaluate the analysis of the ParFlow application
using Scalasca. ParFlow [28] is an open-source application that models the hydrologic
cycle and simulates surface and subsurface flows. It uses numerical methods to solve
the Richardson equation. ParFlow can be run in parallel using MPI. In the context of
this work, ParFlow was executed with example input data on 16 processes distributed
across four nodes. A filter was applied to ensure that Score-P only collected event
data for call paths in which MPI communication occurred. This reduced both the
measurement overhead and the amount of trace data, and facilitated the evaluation
of the analysis results. The parallel execution time was 59.77 seconds, with each
process spending an equivalent amount of time, resulting in a total execution time of
956.32 seconds.

The analysis results conducted with the Scalasca master branch will be presented
first, and then compared to those obtained with the Scalasca version that includes
the implemented probe handling. This comparison will allow for an evaluation of
the new insights gained. The timestamp correction is performed prior to the various
analyses and will therefore be considered first.

The Scalasca master version identified and corrected ten clock condition violations,
whereas the version with probe handling detected and fixed 42 violations. Since
both analyses utilized the same trace data, it can be assumed that the 32 additional

violations occurred in send-probe pairs and were missed by the latest Scalasca version.

45

4 Evaluation

Figures and show screenshots of the analysis result visualizations in the
Cube report browser. Cube has a three-dimensional structure comprising a metric
dimension, a program dimension and a system dimension. The metric dimension
includes metrics like time, delay costs and the critical path. Detected wait states are
displayed as inner nodes in the time metric. The program dimension contains the
call tree of the measured application. The tree is either displayed nested in the same
way as the regions are nested in the trace data, or it is displayed in a flat hierarchy
to be able to view the metrics data for a specific region in aggregated form. The
metric values can be mapped to specific parts of the call tree to identify where it
occurred. The colors next to the nodes indicate the degree of influence of the node.
Blue represents a low level of influence, while red denotes a high level of influence.
The course of the color scale is illustrated at the bottom, though it is truncated since
the tree view for the system dimension (right of the call tree pane) is not shown.
The program dimension contains the locations specified by the trace data. Except
the case where the call tree is displayed flat, the dimensions are present in a tree
structure. Collapsed nodes show inclusive values (i.e., the value of the node itself
as well as the aggregated values of their child nodes), while expanded nodes show
exclusive values and the distribution across child nodes. This hierarchy is depicted

in Figure 23| on the example of the time metric.

File Display Plugins Help

Absolute

& Metric tree

-~ O 0.00 Time (sec)
~ O 0.00 Execution
718.30 Computation
-~ @ 1.64 MPI

» @ 12.96 Management

» O 0.00 Synchronization
- 0 0.00 Communication

~ @ 35.29 Point-to-point
= 79.60 Late Sender]|

0.00 Late Receiver [§]

.
» O 0.00 One-sided
» O 0.00 File I/O
O 0.00 Overhead
1.46e5 Visits (occ)
» @ 128 MPI synchronizations (occ)

» O 0 MPI pair-wise one-sided synchronizations (occ)
» @ 1.87e4 MPI communications (occ)

» O 0 MPI file operations (occ)

» B 1.28e9 MPI bytes transferred (bytes)

B

» @ 190.50 Delay costs (sec)

Metric selection percent

E call tree | [E] Flat tree
= O 0.00 MPI_Send =

» O 0.00 amps_Recv
O 0.00 MPI_Recv
O 0.00 new_HBT_element

» @ 100.00 Solve

» O 0.00 FreeCommPkg

» @ 100.00 SolverRichards

» @ 99.39 SetupRichards

+ O 0.00 MetadataAddParflowDomaininfo
O 0.00 MPI_Reduce

» @ 49.83 SetProblemData

» @ 39.72 Geometries

» @ 88.78 GrGeomSolidFromGeom

» @ 88.78 GrGeomNewsSolid

» @ 88.78 ComputeBoxes

» @ 2.39 ComputelnteriorBoxes

» O 0.00 InitVectorUpdate

» 0 0.00 InitCommunication

» O 0.00 amps_IExchangePackage
O 0.00 MPI_Recv_init

» @ 79.60 MPI point-to-point wait states (propagating vs. terminal) (sec) O 0.00 MPI_Ssend_init

» @ 79.60 MPI point-to-point wait states (direct vs. indirect) (sec)

» @ 59.77 Critical path (sec)

» @ 956.30 Performance impact (sec)
» @ 26.87 Computational imbalance (sec)

O 0.00 MPI_Startall
+ @ 100.00 FinalizeVectorUpdate
» @ 100.00 FinalizeCommunication
» @ 100.00 amps_Wait
» @ 100.00 amps_wait_exchange
r 100.00 MPI_Waitall
+ O 0.00 FreeVector

7
|o.oo 79.60 (8.30%)

958.56‘ ‘o.oo 100.00 100.00|

Figure 23: Cube Visualization of Wait States in ParFlow with Scalasca Master.

The Figure shows the metric and program dimensions of the results obtained with
the Scalasca master version. The execution time is divided into computation and

MPI time, which is split further into several sub-metrics. In the time metric, the Late

46

4 Evaluation

Sender and Late Receiver wait states are listed as child nodes of the time spent in
point to point communication. It can be seen, Scalasca master detected 79.6 seconds
of Late Sender waiting time, which is classified as 66.53 seconds of standard Late
Sender instances and 13.07 seconds of wrong order situations (not shown). Only a
minimal amount of Late Receiver wait states were detected. The call tree is shown
in a flat hierarchy to display the waiting time accumulated for a specific region. The
values displayed in the flat tree indicate the percentage of time dedicated to the
selected metric. In Figure [23]it is depicted that 100% of the Late Sender waiting
time was spent in MPI_Waitall calls. MPI_Waitall is a blocking call which is passed
a list of request objects that identify operations initiated with a non-blocking call.
During the MPI_Waitall call, the invoking process remains in the call until all related
operations are completed. The identification of Late Sender wait states in these calls
indicates that in the calls in question the operation that was completed last, and

therefore is responsible for the observed waiting time, was a receive.

Eile Display Plugins Help

Absolute - | |Metric selection percent
[Metric tree [call tree | [E] Flat tree
~ O 0.00 Time (sec) = O 0.00 MPI_Send =
- O 0.00 Execution » @ 16.02 amps_Recv
718.30 Computation
- @ 1.64 MPI O 0.00 MPI_Recv
» @ 12.96 Management O 0.00 new_HBT_element
+ O 0.00 Synchronization » @ 99.92 Solve
- O 0.00 Communication » O 0.00 FreeCommPkg
- @ 20.11 Point-to-point » @ 99.92 SolverRichards
= 94.78 Late Sender]| » @ 94.20 SetupRichards
0.00 Late Receiver [§] + O 0.00 MetadataAddParflowDomaininfo
v O 0.00 MPI_Reduce
» O 0.00 One-sided » @ 41.85 SetProblemData
+ 0 0.00 File I/O » @ 33.36 Geometries
O 0.00 Overhead » @ 74.56 GrGeomSolidFromGeom
1.46e5 Visits (occ) » @ 74.56 GrGeomNewSolid
» @ 128 MPI synchronizations (occ) » @ 74.56 ComputeBoxes
» O 0 MPI pair-wise one-sided synchronizations (occ) » ® 2.01 ComputelnteriorBoxes
» ® 1.87e4 MPI communications (occ) » O 0.00 InitVectorUpdate
» O 0 MPI file operations (occ) » O 0.00 InitCommunication
» @ 1.28e9 MPI bytes transferred (bytes) » O 0.00 amps_lExchangePackage
» @ 205.68 Delay costs (sec) O 0.00 MPI_Recv_init
» @ 94.78 MPI point-to-point wait states (propagating vs. terminal) (sec) O 0.00 MPI_Ssend_init
» @ 94.78 MPI point-to-point wait states (direct vs. indirect) (sec) O 0.00 MPI_Startall
» @ 59.77 Critical path (sec) » @ 83.98 FinalizeVectorUpdate
» @ 956.30 Performance impact (sec) » @ 83.98 FinalizeCommunication
» @ 26.87 Computational imbalance (sec) » @ 83.98 amps_Wait

» @ 83.98 amps_wait_exchange
~ 83.98 MPI_Waitall
» O 0.00 FreeVector

|0.00 94.78 (9.89%) 958.56‘ ‘0.00 100.00 100.00|

Figure 24: Cube Visualization of Wait States in ParFlow with Probe Handling.

The Scalasca analysis with probe handling reveals a greater amount of Late Sender
waiting time than was evident in the preceding results. Figure [24] depicts the analysis
results obtained by the prototype implementation, visualized in Cube. Here, 94.78
seconds of Late Sender waiting time was detected, thus 13.3 seconds additional
waiting time. These 13.3 seconds can be expected to correspond to waiting time
spent in probe calls, given that both analysis runs analyzed the same trace data and

the only difference is that the prototype implementation handles the probes. The

47

4 Evaluation

flat tree values indicate that 16.02% of the Late Sender waiting time was spent in
MPI_Probe calls and 83.98% in MPI_Waitall calls.

The detected waiting time in the probes can have an effect on the delay costs and
the critical path. Since almost no Late Receiver waiting times were identified in
the application, it can be assumed that the critical path and the delay analysis
conducted with the probe handling Scalasca version are correct. Figure [25| visualizes
the critical path imbalance obtained with the Scalasca master branch and Figure
that one obtained with the prototype implementation. Figure 26| also illustrate that
the additional waiting time is assigned as Late Sender delay costs. The critical path
imbalance shows the positive difference between the time in a call path on the critical
path and the average time spent in this call path. In other words, it highlights the call
paths where the execution time on the critical path exceeded the average execution
time. The total amount of imbalance only differentiates slightly, but its distribution
to the different ranks shows differences. On rank seven 3.30 seconds of imbalance
were detected in the original analysis whereas the probe handling analysis detected
4.58 seconds. In order to determine where the imbalance differences occur, the call
tree is taken into account. Here, it becomes evident that the routine WritePFBinary
actually has a greater impact on the critical path than assumed by the analysis that
did not take probes into account.

The analysis of the ParFlow application demonstrates that the methodologies pre-
sented in this work for handling probes offer enhanced value for the Scalasca analysis.
Although no fundamentally new ideas for improving the performance were identified
in this application—since the performance bottleneck lies in the computation time of
numerical methods for solving the Richardson equation—the extended analysis suc-
cessfully identified an additional 16.02% of waiting time. Consequently, the extended
prototype implementation detected waiting times that were previously missed by the
original analysis, and the probe handling prevented that the previously uncovered
waiting times falsify the critical path. This shows that the extended analysis provides

valuable improvements.

48

5 Conclusion and Future Work

This thesis presented an in-depth exploration of methodologies for handling probe
calls in the performance analysis tool Scalasca. The existing OTF2 event model
was extended with two additional events: a probe and a match event. The probe
event is recorded in the MPI_Probe, MPI_Mprobe and successful MPI_Iprobe, and
MPI_Improbe calls, while the match event is written in MPI_Mrecv and MPI_Imrecv
regions prior to the receive event. Based on these events, methodologies to extend the
timestamp correction, wait state detection, delay analysis and critical path analysis

were discussed and prototypically implemented in the Scalasca analyzer.

First, the preprocessing step was extended to perform a matching between the probe
events and the receive events that retrieve the probed messages. This matching
allows to distinguish whether a receive was probed. Using this information, the
timestamp correction was enhanced to fix clock condition violations in send-probe
pairs. Subsequently, the events were handled in the wait state analysis, enabling the
detection of Late Sender wait states in probe calls. Here, a distinction was made
between pure Late Sender wait states, wrong order situations, and simultaneous Late
Sender and Late Receiver situations. The latter introduced the problem that two
synchronization points are present in the send event, which could not be handled by
the delay analysis infrastructure. Since Late Sender wait states are more common
than Late Receivers, the delay costs for the Late Senders were calculated in this
corner case. Furthermore, the critical path analysis was extended to handle the
probe events. To demonstrate the additional value offered by the probe handling and
the functionality of the implemented prototype, various test cases and the real-world
application ParFlow were evaluated. These use cases showed that the extended
prototype implementation detected waiting times that were previously missed by the
original analysis, and that the probe handling prevented the previously uncovered
waiting times to falsify the critical path, thereby demonstrating the enhancement of

the extended analysis.

Future work could address improvements to the implemented prototype analysis that
could not be implemented in this thesis, with the aim of integrating probe handling
into a release version of Scalasca. Currently, the preprocessing matching between
probe and receive events requires the internal representation of the receive event to
include an additional parameter for holding the event ID of the related probe, or a
special value indicating that the receive was not probed. However, many applications
do not use message probing, and in these cases, the additional storage is needed but
not utilized. To address this issue, it may be beneficial to introduce an internal event
representation for probed receive events within Scalasca. When the trace data is

read into the main memory of each process, Scalasca creates objects representing

49

5 Conclusion and Future Work

each event. During this process, at the time a receive event is encountered, it could
be determined whether the receive matches a prior probe event. In the case it does,
Scalasca would not store an instance of the regular receive event representation,
but an instance of an internal probed receive event representation that offers an
additional parameter for the probe event ID. Additionally, the infrastructure of the
delay analysis should be adjusted to handle two synchronization points for a single
event. Initially, this would involve changing the data structure of the synchpoint and
synchrank maps. As the event where the synchronization point occurs is the key
of these maps, the data structure for the value would need to be a list, making it
possible to store synchronization information for multiple points. These should be
ordered by the timestamps of the events on the peer processes. Considerations will
need to be made on how to manage this in the analysis. Another area for future work
involves extending the implementation to handle multi-threaded applications, where
MPI communication can occur on each thread. This may result in the probe and
receive events occurring at different locations, requiring a revision of the preprocessing
matching. In the case of regular probes, the matching can still be erroneous. However,
for matching probes, the related receive can be identified through the message handle
ID. This would require the variable storing this ID to be shared across the threads,
along with a corresponding locking mechanism to prevent simultaneous writes by
different threads. A further challenge arises because even when the event ID from
the corresponding receive is stored with the probe event, this receive event cannot
be accessed if it occurs on another location, as event IDs are only accessible within

the same location.

20

References

[1]

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard
Version 4.1, November 2023. URL https://www.mpi-forum.org/docs/mpi-4.1/
mpidl-report.pdfl

Markus Geimer, Felix Wolf, Brian J. N. Wylie, and Bernd Mohr. Scalable parallel
trace-based performance analysis. In Bernd Mohr, Jesper Larsson Traff, Joachim
Worringen, and Jack Dongarra, editors, Recent Advances in Parallel Virtual
Machine and Message Passing Interface, pages 303-312, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

Markus Geimer, Felix Wolf, Brian J.N. Wylie, and Bernd Mohr. A scalable
tool architecture for diagnosing wait states in massively parallel applications.
Parallel Computing, 35(7):375-388, 2009.

Michael Gerndt. Performance Analysis Tools, pages 1515-1522. Springer US,
Boston, MA, 2011.

Score-P. Website, accessed 2024-07-18. URL https://www.score-p.org/.

Andreas Kniipfer, Christian Rossel, Dieter an Mey, Scott Biersdorff, Kai Di-
ethelm, Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz,
Allen Malony, Wolfgang E. Nagel, Yury Oleynik, Peter Philippen, Pavel Sa-
viankou, Dirk Schmidl, Sameer Shende, Ronny Tschiiter, Michael Wagner, Bert
Wesarg, and Felix Wolf. Score-p: A joint performance measurement run-time
infrastructure for periscope, scalasca, tau, and vampir. In Holger Brunst,
Matthias S. Miiller, Wolfgang E. Nagel, and Michael M. Resch, editors, Tools
for High Performance Computing 2011, pages 79-91, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

Adrian Munera, Sara Royuela, German Llort, Estanislao Mercadal, Franck
Wartel, and Eduardo Quinones. Experiences on the characterization of parallel

applications in embedded systems with extrae/paraver. pages 1-11, 2020.

Laksono Ad hianto, S Banerjee, M. Fagan, M Krentel, Gabriel Marin, John
Mellor-Crummey, and Nathan Tallent. HPCToolkit: Tools for performance
analysis of optimized parallel programs. Concurrency and Computation: Practice
and Ezxperience, 22, 2009.

Departament Computadors, Vincent Pillet, Jests Labarta, Toni Cortes, and
Sergi Girona. Paraver: A tool to visualize and analyze parallel code. WoTUG-18,
44, 1995.

o1

https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://www.score-p.org/

References

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[20]

52

Wolfgang Nagel, Alfred Arnold, Michael Weber, Hans-Christian Hoppe, and
Karl Solchenbach. Vampir: Visualization and analysis of mpi resources. Super-
computer, 12, 1996.

Scalasca. Website, accessed 2024-07-18. URL https://www.scalasca.org/.

Sameer S. Shende and Allen D. Malony. The tau parallel performance system.
Int. J. High Perform. Comput. Appl., 20(2):287-311, 2006.

Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt. Periscope: An
online-based distributed performance analysis tool. In Matthias S. Miiller,
Michael M. Resch, Alexander Schulz, and Wolfgang E. Nagel, editors, Tools
for High Performance Computing 2009, pages 1-16, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas Kniipfer, Wolf-
gang Nagel, and Felix Wolf. Open trace format 2: The next generation of
scalable trace formats and support libraries. volume 22, pages 481 — 490, 2012.

Robert Bell, Allen D. Malony, and Sameer Shende. Paraprof: A portable,
extensible, and scalable tool for parallel performance profile analysis. In Harald
Kosch, Laszl6 Boszorményi, and Hermann Hellwagner, editors, Euro-Par 2003
Parallel Processing, pages 17-26, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

K.A. Huck and A.D. Malony. Perfexplorer: A performance data mining frame-
work for large-scale parallel computing. In SC ’05: Proceedings of the 2005
ACM/IEEE Conference on Supercomputing, pages 41-41, 2005.

Pavel Saviankou, Michael Knobloch, Anke Visser, and Bernd Mohr. Cube
v4: From performance report explorer to performance analysis tool. Procedia
Computer Science, 51:1343-1352, 2015.

F. Wolf and B. Mohr. EPILOG Binary Trace-Data Format (Version 1.1).
Technical Report ZAM-IB-2004-06, Jilich, 2004.

Andreas Kniipfer, Ronny Brendel, Holger Brunst, Hartmut Mix, and Wolf-
gang E. Nagel. Introducing the open trace format (otf). In Vassil N. Alexandrov,
Geert Dick van Albada, Peter M. A. Sloot, and Jack Dongarra, editors, Compu-
tational Science — ICCS 2006, pages 526533, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

Cube. Website, accessed 2024-07-18. URL https://scalasca.org/software/cube-4/
X/l

https://www.scalasca.org/
https://scalasca.org/software/cube-4.x/
https://scalasca.org/software/cube-4.x/

References

[21]

[22]

23]

[24]

[25]

[27]

28]

Daniel Becker, Rolf Rabenseifner, and Felix Wolf. Timestamp synchronization
for event traces of large-scale message-passing applications. In Proceedings of
the 14th European Conference on Recent Advances in Parallel Virtual Machine
and Message Passing Interface, PVM/MPI'07, page 315-325, Berlin, Heidelberg,
2007. Springer-Verlag.

Daniel Becker, Rolf Rabenseifner, Felix Wolf, and John C. Linford. Scalable
timestamp synchronization for event traces of message-passing applications.
Parallel Comput., 35(12):595-607, 2009.

Rolf Rabenseifner. The controlled logical clock-a global time for trace based
software monitoring of parallel applications in workstation clusters. In PDP,
pages 477-484. Citeseer, 1997.

David Bohme, Markus Geimer, Felix Wolf, and Lukas Arnold. Identifying the
root causes of wait states in large-scale parallel applications. In 2010 39th

International Conference on Parallel Processing, pages 90-100, 2010.

David Bohme, Markus Geimer, Lukas Arnold, Felix Voigtlaender, and Felix
Wolf. Identifying the root causes of wait states in large-scale parallel applications.
3(2), 2016.

David Bohme, Felix Wolf, Bronis R. de Supinski, Martin Schulz, and Markus
Geimer. Scalable critical-path based performance analysis. In 2012 IEEE 26th

International Parallel and Distributed Processing Symposium, pages 1330-1340,
2012.

JURECA administrators. Jureca user documentation, accessed 2024-08-06. URL
https://apps.fz-juelich.de/jsc/hps/jureca/.

ParFlow. Software. URL https://doi.org/10.5281/zenodo.10989198.

23

https://apps.fz-juelich.de/jsc/hps/jureca/
https://doi.org/10.5281/zenodo.10989198

List of Figures

{4 OTF2 Events in Blocking Point-to-Point Communication|....................

[> OTEF2 Events in Nonblocking Point-to-Point Communication|

{7 Analysis of Late Sender Wait State|...........
[8 Analysis of Late Sender Wrong Order Wait Statel.............................
[9 Analysis of Late Receiver Wait State|l
({10 Short- and Long-term Delay Costs|................ i

(14 Analysis of Late Sender Wait State in Probe].......................
(15 Analysis of Late Sender Wrong Order Wait State in Probe|..................
(16 Delay Analysis: Late Receiver and Late Sender|...............................
(17 Critical Path Analysis: Late Receiver and Late Sender|.......................

[18 Test Case: Preprocessing Matching),

[26 Cube Visualization of the Critical Path in Parklow with Probe Handling] ..

25

ot - W L) -

© 0 N O

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32

33

34
35
36
37
38
39
40
41

Appendix

Test Codes

#include <mpi.h>

int main (int argc, charx* argv) {

MPI_TInit

int rank

(¢argc, &argv);

, size;

MPI_Comm_rank (MPI_COMM_WORLD, é&rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);

if (rank
int
MPI_
int
MPI_.

MPI_
MPI_

int

==) {
datal = 42;
Send (&datal, 1, MPI_INT, 1, 1, MPI_COMM_WORLD) ;

dataz2 = 24;
Send (&data2, 1, MPI_INT, 1, 2, MPI_COMM_WORLD) ;

Probe(l, 3, MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;
Probe (1, 3, MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;

recv_data;

MPI_Recv (&recv_data, 1, MPI_INT, 1, 3, MPI_COMM_WORLD,

—

} else i

MPI_STATUS_IGNORE) ;

f (rank == 1) {

MPI_Message message;

MPI_Mprobe (0, 1, MPI_COMM_WORLD, &message, MPI_STATUS_IGNORE) ;

MPI_Probe (0, 2, MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;

int
int

recv_datal;
recv_data?2;

MPI_Recv (&recv_datal, 1, MPI_INT, 0, 2, MPI_COMM_WORLD,

—

MPI_STATUS_IGNORE) ;

MPI_Mrecv (&recv_data2, 1, MPI_INT, &message,

—

int

MPI_STATUS_IGNORE) ;

send_data = recv_datal + recv_data2;

MPI_Send(&send_data, 1, MPI_INT, 0, 3, MPI_COMM_WORLD) ;

MPI_Fina
return O

lize();

4

26

Listing 1: Test Case: Preprocessing Matching

© 0w N s W N

I e e =
o O W N O kA W N = O

21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36

37
38
39
40
41
42

Appendix

#include <mpi.h>
#include <stdio.h>
#include <unistd.h>

namespace custom {
void sleep (int

seconds) |

::sleep(seconds);

}i

int main (int argc,
MPI_Init (&argc,

int world_size;

MPI_Comm_size (MPI_COMM_WORLD,

int world_rank;

MPI_Comm_rank (MPI_COMM_WORLD,

if (world_rank
int number

custom: :sle

MPI_Send (&number,

} else if (worl

charxx argv) {
&argv) ;

&world_size);

&world_rank) ;

== 0) {

= 42;

ep(2);

1, MPI_INT,
d_rank == 1) {

1, 0, MPI_COMM_WORLD) ;

int recv_number;

MPI_Status
MPI_Probe (0

MPI_Recv (&recv_number,
MPI_STATUS_IGNORE) ;

—

custom: :sle

MPI_Send (&recv_number,

} else if (worl

status;
, 0, MPI_COMM_WORLD,
1,

&status) ;
MPI_INT, 0, 0, MPI_COMM WORLD,
ep(1l);

1, 2,

== 2) {

MPI_INT, 1, MPI_COMM_WORLD) ;

d_rank

int recv_number;

MPI_Status
MPI_Probe (1

MPI_Recv (&recv_number,
MPI_STATUS_IGNORE) ;

—

MPI_Finalize();
return 0;

status;
, 1, MPI_COMM_WORLD,
1,

&status) ;

MPI_INT, 1, 1, MPI_COMM WORLD,

Listing 2: Test Case: Late Sender

57

© W N O e W N

[I T T T e =
A W@ N B O © ® N O w ok W N~ O

26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42

43
44
45
46
47
48

49
50
51
52
53

Appendix

#include <iostream>
#include <vector>
#include <mpi.h>
#include <unistd.h>

#define MSG_SIZE 1000

namespace custom {
void sleep(int seconds) {
::sleep(seconds) ;

bi

std::vector<int> fillArray(int size) {
std::vector<int> result (size);

for (int

i

= 0; 1 < size; ++i) |

resultf[i] = i + 1;

}

return result;

int main (int argc, charx* argv) {
MPI_Init (&argc, &argv);

int world_rank;
MPI_Comm_rank (MPI_COMM_WORLD, &world_rank);
int world_size;
MPI_Comm_size (MPI_COMM_WORLD, &world_size);

if (world_rank !'= 0) {
std::vector<int> send_data = fillArray (MSG_SIZE);
int dest_rank = 0;

custom: :sleep(world_rank);
MPI_Send(&send_data[0], MSG_SIZE, MPI_INT, dest_rank,
— world_rank, MPI_COMM_WORLD) ;

} else {

for
MPI_Status status;
MPI_Probe (i, i, MPI_COMM_WORLD, é&status);

(int 1 = 2; i < world_size; ++i) {

std::vector<int> recv_data (MSG_SIZE);
MPI_Recv (&recv_data[0], MSG_SIZE, MPI_INT, i,

}

—

MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;

MPI_Status status;
MPI_Probe(l, 1, MPI_COMM _WORLD, &status);

std::vector<int> recv_data (MSG_SIZE) ;
MPI_Recv (&recv_data[0], MSG_SIZE, MPI_INT, 1, 1,
— MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;

MPI_Finalize();

return O;

o8

Listing 3: Test Case: Late Sender Wrong Order

© W N O s W N =

LT T T
I R R e T R R S T =)

24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43

44
45
46
47
48
49

Appendix

#include <iostream>
#include <vector>

#include <mpi.h>

#include <unistd.h>

#define MSG_SIZE

10000000

void sleepl (int seconds) {
sleep (seconds);

void sleep2 (int seconds) {
sleep (seconds) ;

std: :vector<int>

fillArray (int size) {

std: :vector<int> result (size);

for (int i =

0; i < size; ++1) {

result[i] = 1 + 1;

}

return result;

int main(int argc, charx* argv) {
MPI_TInit (&argc, &argv);
int world_rank;
MPI_Comm_rank (MPI_COMM_WORLD, &world_rank);
int world_size;
MPI_Comm_size (MPI_COMM_WORLD, &world_size);

if (world_rank % 2 == 0) {
std::vector<int> send_data = fillArray (MSG_SIZE);
int dest_rank = (world_rank + 1) % world_size;
sleepl (1) ;

MPI_Send(&send_data[0], MSG_SIZE, MPI_INT, dest_rank, O,
— MPI_COMM_WORLD) ;

} else {

MPI_Status status;

MPI_Probe (MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, &status);
sleep2(2);

std::vector<int> recv_data (MSG_SIZE) ;

MPI_Recv (&recv_data[0], MSG_SIZE, MPI_INT, MPI_ANY_SOURCE,
< MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;

MPI_Finalize
return 0;

()

0,

Listing 4: Test Case: Late Sender Late Receiver

29

B) Il - Im

0E'E 00.07 Tm.._nm (%61'ST) 0E'E 00.07 T.h.mm (%¥9°GE) 0E'TE 00" 7

= : - (SWBW3P 9T) IV | {29s) 22uelequi |euoileINdwo) /997 M i
N ' (22s) 1oedW| 23UBWICUSd OE'OGE M «

(99s) yred |eonud Lp'ge O
Auum:ﬁm:__u:_.mEH:_Emﬂﬁﬂ_mfz_a.s.?_a_n_s_S.Eu.
u

tion of the Critical Path in ParFlow with Scalasca Master.

1zZa

Appendix

azijeuly sdwe gp0 O « |euiwa) ‘sa Buiebedolad) sa1els jiem julod-o3-uiod |diN 09°6L 4
AW 19H 9314 000 O 3AN2310D £9°0TT M «
Aiowapxepuud 00 O « 13A1923y 3187 00°0 M ¢
Buiwiuud 0070 O « wuzy-buol o1 1y @
BI1X3IURISU[23.4SPIRYIYIBAI0S 00°0 O « wiIa-Uoys 64'8E M
SP4BYII4UMOpIEaL 000 O « Jspuas 21e7 0070 O -
Aieulgddaum 12°0 o ST YUY |dW LZ'T | juied-03uiod 00°0 [-
23epdnyoidanazijeuly TO'0 M « PT3juey IdiW 9570 M Juawabeuep £z'0 M «
33epdnuo3deAlUl 0070 O « ET uey IdW 00°0 O IdW 000 O ~
I2AOSUI[UON[OSUDY 000 M « ZT Juey IdW £6°0 I (23s) 51502 Aej2@ 000 O -
SPJEYDIY3OUBAPY GO0 M - Z6T024(apou - O - (s21Aq) paliaysuel) s331Aq |diN 69877 M «
aInssaldaseyddl 6€°T [« TT JUey |diW Tv'9 [(220) suonetado 3|y IdW 0 O «
Byduiwodaaiy 00’0 O OT Juey IdW LE'T B (320) suolEDIUNWWOI |dIN #2/8'T W ¢
JiesIndinQuoleanies 00’0 O « 63uey IdW T80 | (220) suoneziuoiyauAs papis-auo asim-ied |diw 0 O +
A1eulg4da1um 00°0 g ueY IdW £Z'0 W (320) suoneziuoIyduAS |diW 8T M «
a1epdnJoldanazieuld 00°0 O « 681024 apou - J - (220) SYSIA G’ T W
21epdni0133A31ul 00°0 O ¢ Z032Rd Yaums - [J - peayian0 000 O
dorsindwod 000 O « — 0/13)14 000 O «
e1eQWR|qoIdIRs $9'T O « £ 9 juey IdW 66T I papis-2uQ 0070 O +
ojujuewogmoledppyeIepeIBN 00°0 O ¢ < S ouey [dW 0€°0 W 330D ££°0TT F «
Juawele@ 19gH mau 000 O (U] ¥ uey IdW T6°€ @ [8] 1aA13y 3327 000 W
spieyarydnmias 00’0 O - 960024 apou -] - 3puas 2187 0964 I «
Spleydryaaos 0070 O ~ 8 £jued IdW vT'T @ uiod-03-ulod 67°GE W -
Bydwwodaa14 000 O g Z3uey IdW 00°0 O uonesunwwod 00’0 O ~
JUBWIIR1gH Mau 00°0 O ° T 3uey [dW 000 O uonezjuoiyauAs 000 O «
3Al0S 000 O » _m. 0 3uey Idin S0°0 | Juawabeuel 96°zT W «
aaman - gal 00’0 O « £60024(apou - J - IdW $9'T W -
1yl sdwe po0 O « = TOX2BJ Yoms - O ~ uonendwod 0£°81L B
urew oo O~ o TOII93 Yaums - [- uonndax3 0o'o O -
3 moped o0 O - M 3 XNur auysew - 0 - | |~ (22s) aWIL 00°0 O ~
a2 3.4 [F] | san|e0[E .m 1sinquns @ sonsnels [l | 9911 waisAs @ EEhEIRET |
- aInjosqy Iy aInjosqy | - |1njosqy

disH suibnjg Aedsig apg

: Cube Visual

Figure 25

60

Appendix

(%€6°02) 8G'¥

00°0| |LL'6S

(%29'9€) 68'1C 000

9969°C 000

azi|eud sdwe gp0 O «
USWRR 1 gH 221} 9369'7 M
Kowspxewiuud 0o0 O ¢
Burwiaungd 0g'o O +
BIIX22UBISUI93IJSPIRYIIYI2A|0S 000 [T ¢
spleydiyumoplieal 000 O ¢
Aieuigidaium 950
21epdnJo1dapazijeuld 100 M «
a1epdnuo1daalul 000 O «
J2AJOSUIUON[OSUIY 000 M «
spleyaryaduenpy 10°0 W -
2Inssaldaseydd] 6£°T W «
Bydwwodaaly 0070
a1e3sINdinQuonelnies 61°0
Aieuig4da3um 8470
a1epdnuolazAazi|euly 00'0
21epdnJo1daAlUl 00°0
dol2yndwod 000
e1eqW3|qoIdIas ¥9'T
0jujulEWOOMOL}EdPPYRIEPEIBN 00°0
JUBWRI2 19H Mau 00°0
spleyoiydnias o0 W -
spleydiyianios 000 O -
Bydwwodaai4 000 O
UBWRI3 1gH Mau 000 O
A0S $S°89TSY9Z- M ~
aamaN gai o000 O +
nu| sdwe oo O ¢
ulew po'o O ~
- mo|ped 0oo O -

sanied[[| sanecH
- 31nj0sqy

OO0 m 00

System View | Topologies

General

1singquns @

(suawa3|3 o1) |I¥

»

ST oUeY IdW LTT B
PT3ueH IdiN £0°0 W
€T uey Idin 000 O
Z13juey IdiW 60°0 |
Z6T02u apou - O «
11 3uey IdW Tv'9 [
0T Jued IdiN 90°'T |
6uey IdW £6°0 |
g uey IdW ST'0 |
68102 apou - O «
Z0HIRd Youms - [
[/ ouey idNgSy 8 |
9ueY IdW 29'T |
G uey IdW 0E'0 W
¥Ry IdN Z6'€
960024 apou - 0 ~
€uey IdW 62T |
Zuey IdW 000 O
Tuey IdW ¥0°0 |
0ueY IdW ZT'0 |
€600 apou - O «
TOX28d Yydoums - [-
101192 yaums - O -
XNnurj auysew - [-
sonsnels @l | 221 waisAs M

anjosqy

! (23s) asuejequul jeuocneindwo) /897 W A-
(23s) uquE_ JUBWIOLRd 0E'9G6 W «

(29s) yied jeanud gg’Le O
(295s) (39311pUl "sA 10211p) S33e3s Jem juiod-o)-jutod | 8L'F6 M «
|euiwua) ‘sa Bunebedolad) sa1eis yem juiod-o3-quiod |diW 82'¢6 W
3A122(0] £0°0TT [«

J2A1923Y 2187 000 O «

wi23-buo g9'es O
W=l-oys oT' Iy |

lapuas aje1 000 O -
jutod-01-3uiod 00°0 O -
Juawabeuep fz'0 W «
IdiW 00°0 O
(29s) s1s02 Aej2Q 00°0
(5914q) pauajsuen) sa1Aq |di 6982 T
(220) suonesado 2|4 |diW 0
(220) SUOIIEDIUNWIWOD |diN 7.8 T
(220) suoneziuoiyduks papis-aue asim-aled [0
(220) suoneziuolysuhs |di 8ZT
(320) SHSIA G291'T
peayi2A0 00°0 O

o/l 314 000 O ¢

papis-auQ 000 O «

EmOmOmO

julod-03-juiod TT°07 M -
uopesunwiwo) 00’0 O -
uol1eZIUOIYIUAS 000 [¢
uawabeuely 96°ZT W «
Idi #9°T W -
uonendwo) 0g'gTL M
uonnlax3j 000 O -
(2as)awil 000 O ~

EETBIBETI= |
21njosqy
diaH sulbnid Aejdsig ang

ing.

tical Path in ParFlow with Probe Handl

: Cube Visualization of the Cri

Figure 26

61

	Introduction
	Background and Context
	Message Passing Interface (MPI)
	Point-to-Point Communication
	Message Probing
	Wait State and Waiting Time

	Performance Analysis Tools
	Score-P
	Scalasca

	Analysis of Message Probing
	Extended Event Model
	Timestamp Correction
	Wait State Analysis
	Delay Analysis
	Critical Path Analysis

	Evaluation
	Setup
	Functional Evaluation
	Test Case: Preprocessing Matching
	Test Case: Clock Condition Violation in Send-Probe Pair
	Test Case: Clock Condition Violation in Send-Receive Pair
	Test Case: Late Sender
	Test Case: Late Sender Wrong Order
	Test Case: Late Sender and Late Receiver

	Real World Example

	Conclusion and Future Work
	References
	List of Figures
	Appendix

