001     1033654
005     20250203103133.0
024 7 _ |a 10.34734/FZJ-2024-06526
|2 datacite_doi
037 _ _ |a FZJ-2024-06526
041 _ _ |a English
100 1 _ |a Vyas, Kunal
|0 P:(DE-Juel1)191568
|b 0
|e Corresponding author
111 2 _ |a Adiabatic Quantum Computing 2024
|g AQC 2024
|c Glasgow
|d 2024-06-10 - 2024-06-14
|w UK
245 _ _ |a Investigating scaling properties for quantum annealing to solve the Fermi-Hubbard model using the kinetic energy part as the driving Hamiltonian
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1736168144_29199
|2 PUB:(DE-HGF)
|x After Call
502 _ _ |c RWTH Aachen
520 _ _ |a Quantum annealing can help in finding the ground state of Hamiltonians describing many body systems. One such Hamiltonian is the Fermi-Hubbard Hamiltonian. We investigate the scaling complexity for the quantum annealing process carried out using the kinetic energy part of the Hubbard model as driving Hamiltonian for ground state calculations. The way we do this is by studying the gaps between the ground state and the 1st relevant excited state that participates in the diabatic evolution for a 1-dimensional system. The behavior of these gaps with increasing system size could hint at polynomial scaling of required annealing time for finding the ground state of the Hubbard Hamiltonian. We also try to extend this idea to a Hubbard model ladder to learn more about the scaling behavior of gaps relevant to adiabatic evolution. Further, we discuss about initial state preparation for the quantum annealing strategy under study. Information on the complexity coupled with an efficient way of preparing the initial state could bolster our hopes for using adiabatic quantum computation for solving correlated many-body Hamiltonians.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)355031190 - FOR 2692: Fundamental Aspects of Statistical Mechanics and the Emergence of Thermodynamics in Non-Equilibrium Systems (355031190)
|0 G:(GEPRIS)355031190
|c 355031190
|x 1
700 1 _ |a Jin, Fengping
|0 P:(DE-Juel1)144355
|b 1
|u fzj
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 2
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/1033654/files/aqc_talk.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1033654
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)191568
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144355
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)138295
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21